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Expressive Path Shape (Swagger): Simple Features that Illustrate a
Robot’s Attitude toward its Goal in Real Time*

Heather Knightl, Ravenna Thielstrom?, and Reid Simmons!.

Abstract— Expressive motion can situate a robot’s attitude
in its task motions, illustrating real-time reactions. Inspired by
acting movement training, we construct path shape features that
layer expression into a mobile robot’s motion traversal. Qur
video-study results show that simple variations of path shape
and orientation can influence human perceptions of a robot’s
task, focus, and confidence. We further find that sequencing
path features is a useful way to create expressions that are
pinpointed in time without requiring changes in velocity. Our
quantitative features represent the Laban Space Effort: using
path shape and orientation along the path to communicate the
direct or indirect attitude of the robot toward its target desti-
nation (acting vocabulary italicized). These features illustrate
expressive or stylistic aspects of the robot’s inner state, filling a
gap in the pre-existing literature that has mostly focused on task
legibility. Our future work will evaluate temporal and spatial
robot motion features in explicit interaction contexts.

I. INTRODUCTION

Motion plays an important role in human-human commu-
nication. As this paper will demonstrate, the way a mobile
robot traverses space appears to effect similarly important
attributions even with simple degrees of freedom (a single
omni-directional base). For example, we find that robot path
shape clearly influences attributions toward the robot (e.g.,
confidence, confusion), and that transitions provide highly
salient contrasts as regards the robot’s detection of its goal.

We seek to layer such expressive motions into a robot’s
task actions by varying its trajectory between known start
and stop positions. Our path shape features are principled
(building on the Laban Effort System), simple (they apply to
simple mobile robot motions) and mathematically grounded.
In fact, we seek to operationalize the Laban Space Effort,
a concept from dance and acting training that qualitatively
describes how an agent can use motion to express its attitude
toward a goal. Specifically, we explore the impact of path
shape and orientation along path on participant interpreta-
tions of a mobile robot’s Laban Space setting during a motion
traversal (Fig. 1.

To evaluate these Laban Space features, we create videos
in which the robot approaches a beverage stand across vari-
ous path conditions (Fig. 1). As displayed, the robot’s paths
are composed of sinusoidal (indirect) and linear (direct) path
segments. Because our path calculations occur relative to an
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Fig. 1. Compound path conditions with sample attributions: Line-Line
takes a linear path to the beverage stand and seems normal / direct; Sine-
Line may have been looking for something then found it; Sine-Sine could
be confused, playful or weaving around something; Line-Sine may have lost
localization, changed mind or lost confidence.

attentional goal — which we define as an object or location
that requires the robot’s sustained concentration (e.g., as
part of a task) — the motion and orientation parameters are
calculated relative to that focal point.

The results confirm that viewers can interpret expression
layered on top of a robot’s task motions. The parallels in
human behavior help clarify our findings. If a person at
a music festival cannot make up their mind about what
kind of food they would like to eat, they might take an
indirect path. But if they suddenly see something on the
menu they love, that indirect path could immediately become
direct, illustrating their change in state. Alternately, a slight
wavering in their path could betray an inherent shyness or
ambivalence about their choice.

II. COMMUNICATING WITH MOTION

Research into point-light supports the ability of people to
infer emotion from low degree of freedom representations,
e.g., human dancing motions [1], and arm motions while
drinking from a glass, or knocking on a door [2]. It turns
out as long as even simple forms move with or toward a
legible goal, we will make attributions about their mental
state, task, or social relationships [3] [4] [5] [6]. Further work
as found that sequences of motions of abstract objects lead
us to create complex storytelling, as found in the well-known
“Do Triangles Play Tricks?” study [7], and a single-axis door
that one subject thought to have judged him before closing
in his face [8].

This work is part of a larger project operationalizing the
Laban Effort System to simple robot motions [9] [10]. Our
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use of Laban Efforts builds on previous work in robotics and
computer vision that attempt to operationalize this system
[11] [12] [13] [14], defining characteristics relevant to simple
mobile robots. Past work has shown the value of a designing
motion expressions with experts. Willow Garage hired a
Pixar animator to convey that the robot was calculating a
path, enacting a grasp, or reacting to success or failure [15].
This helped human colleagues sympathize with its efforts,
reducing annoyance. Other researchers have focused on
task legibility: showing that manipulator path shape enables
observers to predict the object for which a robot is reaching
[16].

We seek to leverage the benefits of both, taking opera-
tionalizing a system from acting to repeatably layer expres-
sion on a pre-existing robot task. We do this by leveraging
the Laban Effort System. Dancers and actors use the Laban
Effort System to represent the full space of expressive
possibility for how to perform action, e.g., moving from A
to B in a manner that is unenthusiastic [17]. There are four
main Laban Effort Vectors within this system, Space, Time,
Weight, and Flow. The Efforts form a subset of Labanotation
(created in 1963 to record human motions) that codifies
the expressive characteristics overlaying a particular motion
goal. While past research in robot motion has explored
expressive motion features [18] [19], this work builds on
the more than 70 years of experience from another field.

III. THE LABAN SPACE EFFORT

This study concentrates on the Laban Space vector, which
runs along a scale of Direct to Indirect (Fig. 2) and is meant
to represent an agents attitude toward goal [17]. In Laban
terms, Direct motion is single focus, whereas Indirect has
multiple foci.

To evaluate these Laban Space features, we create videos
in which the robot approaches a beverage stand across
various path conditions (depicted in Fig. 1). The robot’s paths
are composed of sinusoidal (indirect) and linear (direct) path
segments. Because our path calculations occur relative to an
attentional goal, which we define as an object or location
that requires the robot’s sustained concentration (e.g., as
part of a task), the motion and orientation parameters are
calculated relative to that focal point. We create videos
spanning all possible compound path instances (4 paths) and
orientation conditions (2 orientation settings). Our series of
online studies collects data that would have been logistically
prohibitive to collect in person. We will describe the survey
questions at the beginning of each results subsection.

IV. SPACE EFFORT PATH FEATURES

This study concentrates on the Laban Space Effort, which
runs along a scale of Direct to Indirect (Fig. 2) and
is meant to represent an agent’s “attitude toward a goal”
(Chapter 2). In Laban terms, direct motion is single focus,
whereas indirect has multiple foci. We explore two classes
of features to represent the Laban Space Effort: Path Shape
and Orientation Setting (Table I).

Direct: SPACE EFFORT Indirect:
linear, expansive,
pinpointed, < > flexible,
laser-like. meandering
Fig. 2. Illustration of the Laban Space Effort, as described qualitatively in

dance and acting training

Path shape represents the linear or sinusoidal motion from
A to B, which we parametrize by sinusoidal frequency and
amplitude. At the extreme, we expected linear paths to be
seen as direct and sinusoidal paths to be seen as indirect,
however, we were unsure how the sense of direct to indirect
would scale as frequency and amplitude varied (and explore
amplitude also in this experiment).

Orientation setting represents the robot’s gaze angle during
its traversal, either along the path it is traveling, or toward
its final goal. We expected that the robot looking at the goal
throughout the path would be seen as more direct than the
one that was looking along its path (except in the linear
path condition). We were unsure, however, what the relative
importance would be of the path shape versus orientation
setting, and what kind of interaction effect they might have.
For example, we thought orientation setting might emphasize
or de-emphasize path shape.

TABLE I
SPACE EFFORT (DIRECT/INDIRECT) TRANSLATIONAL FEATURES

Sinusoidal Number of periods of the sine, specified in multiples

Frequency of 0.5, to end path on central axis.

Amplitude Peak distance of the path from the central axis, where
LINE is zero amplitude, SINE is non-zero.

Orientation Path: robot orients along the center of the path,

Setting Goal: Orients toward goal as it travels along path.

V. COBOT MOTION GENERATION

CoBot is an autonomous mobile robot with a four-wheeled
omni-directional base. During its everyday operations, the
CoBot robots complete a variety of tasks in an office
environment, such as meeting and guiding someone to a
location, delivering objects and/or messages [20]. During
typical hallway motions, the CoBot operates within a corridor
of safe travel that is 0.5 meters wide, has a minimum velocity
of 0.2 m/s, and a maximum of 1.0 m/s. The robots navigation
system also provides constraints that influence our feature
implementations.

Fig. 3 illustrates the steps we use to generate the robot’s
motion trajectory, given a particular Path Shape and Ori-
entation Setting. We calculate our target stopping position
(xT,yT,0xy) relative to an attentional goal at (x,y), also
using the attentional goal position as in input for our orien-
tation setting during the motion, as described at the end of
this section.

To ease feature calculation, we treat the line between our
current position and the attentional goal as our x — awis.
Given the target position, we calculate the path shape char-
acteristics we would like to use to achieve that target. We
do this by choosing a set number of waypoints (IN).
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Fig. 4. Illustrations of Goal and Path orientation settings.

Given the start position xg, the robot’s net motion travels
along this X-axis, with side-to-side oscillation (y), according
to the following equations:

T = xg + velocity * timestamp ]
y = amplitude x sine( frequency * timestamp) M

The CoBots navigate using waypoints, each thinking it has
achieved a waypoint if it comes within a threshold of the
desired position (d=0.2 meters). Thus, we calculate the total
number of possible waypoints (N) by dividing the total dis-
tance along the central axis (D) by the controller resolution
(N =D/d), with a maximum time spacing of d/vel. We
sample the above equations using the waypoint increment,
providing the (x,y) position commands for each waypoint in
the path. The robots have omnidirectional bases, thus making
their orientation independently controllable from its path.
Thus, the final step is to calculate the robot’s orientation ()
at each waypoint consistent with the overall path orientation
setting.

We illustrate the orientation settings in Fig. 4. In the
goal orientation, the robot orients toward the goal location
throughout its motion. In path orientation, the robot orients
along the direction of the path (subtracting the next location
from the current) throughout its motion. At the final waypoint
(n = N), the orientation is toward the goal.

At each previous waypoint (from 1 to N — 1), we calcu-
late orientation from the following equations:

tan(iggsll;:;i), if goal 2
" tan(};"i%?), if path

Goal orientation evokes naturally from a focus on the
attentional goal, while we hypothesize that Path orientation
could make the path shape more legible and/or seem to be
more indirect, as if the robot is focused on its navigation
rather than its attentional goal.

In practice, the robot motions occur in the coordinate
system of the building map, so we must transform our calcu-
lations back into the global coordinate system. In addition, to
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Fig. 5. The robot follows a compound path to the goal

enact these various paths we must ensure two things: that the
approach path is possible given the map (so the robot does
not get stuck), and finally, that the approach path is safe,
i.e., that the vector of motion for each step is in the sensor
range of the robot (so the robot is able to detect unexpected
obstacles it might collide into).

VI. ONLINE EVALUATION

Our research goal is to find out how varying a mobile
robot’s approach path might change attributions people make
about a robot’s inner state (e.g., attitude toward the object of
its attention). To test this concept, our study evaluates various
approach paths of the robot moving toward a beverage stand,
as service robots are a common target application for socially
interactive robots. We evaluate the impact of path-shape
changes by creating paths with two segments, as in Fig. 1,
and vary oscillation amplitudes.

Our study setup includes two consecutive path segments,
as depicted in Fig. 5. Each segment length is 2.0 meters
and includes a full period sine wave. The end distance is
0.3 meters, end angle is O radians (facing stand), and overall
velocity along X is 0.5 meters/second for all paths. Note
that having two sequential sinusoidal segments of the same
amplitude merely results in two periods of that sine wave.

We select three sine amplitudes from the corridor of safe
robot motion we currently use in the hallways on campus: 0.5
meters, 0.25 meters and 0 meters (Table II), which we label,
SINE, 1SINE, and LINE, respectively. This is a conservative
range, as the hallways are closer to 1.5 meters wide, but
people occasionally leave objects by the wall outside their
doors.

TABLE I
PATH AMPLITUDE FEATURE: CALIBRATION CONDITIONS

Label | Amplitude Frequency X-Velocity
SINE 0.5 m 0.5 cycles/m 0.5 m/s
%SINE 0.25 m 0.5 cycles/m 0.5 m/s
LINE 0m 0 cycles/m 0.5 m/s

The variables left to us for manipulation are segment
sequence, sinusoidal amplitude and orientation condition, as
in Table II. We ran several online studies, including two
permutations of Segmentl+Segment2 path shapes (A1,A2).
Our online study questions compare the basic compound
paths (A1 analyses) or assessments across sinusoidal ampli-
tudes (A2 analyses). We also evaluate constant orientation
settings only, as orientation settings are equivalent in linear
path segments.



TABLE III
EXPERIMENTAL VARIABLES BY ANALYSIS

Al. Compound-Paths

[SINE-SINE [ SINE-LINE | LINESINE | LINE-LINE _|
A2. Varied Sinusoidal Amplitude*
[ SINE-SINE | 3SINE-ZSINE | LINE-LINE ]

#ZSINE has half the amplitude of SINE
B. Orientation Conditions
[ GOAL

[ PATH ]

We created seven videos of the Al compound paths to
include both orientation conditions (LINE-LINE goal and
path orientations are equivalent), and two additional videos
of %SINE—%SINE, across both orientation conditions. We
spend the most time on the seven extremal compound paths
(i.e., those composed of SINE and LINE segments), using
the three baseline paths analyses (by which we mean there is
no path shape change), to explore whether attributions scale
with sinusoidal amplitude.

We ran a variety of surveys on Amazon Mechanical
Turk, including open-ended questions, Likert scale questions
(multiple choice answers ranging from Agree to Disagree)
and Semantic differential scales (anchored by opposing con-
cepts like Very Indirect and Very Direct). The large subject
population there gave us the opportunity to measure various
independent features and explore a range of qualitative and
quantitative analysis methodologies, which would have been
logistically prohibitive in an in-person study.

Across our open-ended questions and quantitative analyses
(comprising 6 total surveys), we had 252 unique users who
contributed 688 responses. We treat this as a between sub-
jects experiment, collecting 10-20 independent video labels
per condition, depending on the analysis, and prohibiting
workers from labeling the same video more than once. To
constrain our subjects to a single set of cultural norms, we
required that participants be from the United States.

VII. RESULTS I: QUALITATIVE

The goal of collecting data from people was to characterize
the way they interpret the robot motion. We begin with the
open-ended questions, which provide insight into how people
interpreted our motion features. We also use these responses
to seed survey questions later. Our first question asks them
to describe what is happening in the video. The second asks
them to provide three adjectives describing the robot’s path.
The third question explicitly tells viewers that the robot is
approaching a beverage stand, and asks them to explain the
presence of a transition point in the SINE-LINE and LINE-
SINE paths only.

Subject Descriptions of Robot’s Motion

To validate our study setup (that the story of the robot
approaching the beverage stand was clear irrespective of path
features), we had 85 subjects watch all possible compound
paths without priming, then asked them:

TABLE IV
SUBJECT INTERPRETATIONS OF MOTION SEQUENCE

Approaching stand | 54
Moving/functional | 20
Inner state 5
Alternate task 6

Question 1: “Describe what you think is happening
in the video.”

People were largely task-oriented in their descriptions
(Table 1V). Fifty-four (64%) subjects mention the beverage
or stand as the object of the robot’s motion and (24%)
describe the robot’s motion directly, e.g., “The robot is
crossing the room.” Only five subjects describe aspects of
the robot’s inner state, e.g., “Robot is moving as though it
is unsure,” probably because of the procedural question. Six
reference unrelated tasks such as playing soccer, moving a
podium or vacuuming, perhaps in jest.

These descriptions occurred regardless of which path
shapes were assigned to the first and second segments, thus,
it appears that the robot’s task comes through irrespective
of path. Given the open-ended nature of the question, we
also find it likely that more people understood the beverage
stand to be the object of the robot’s motion. This is good,
because you will remember that the system goal is to layer
expression onto a robot task, not replace the task.

Just in case, in the remaining analyses, we tell people
explicitly: “In the video linked below, a robot approaches a
beverage stand.”

Subject Attributions to Consistent Path Shapes

In our next analysis we seek to gain information about
people’s attributions toward the basic SINE and LINE path
shapes across orientations. In an open-ended question, we
asked subjects to:

Question 2: “Provide three adjectives that describe
the robot’s motion.”

We assigned 45 subjects at random to one of the compound
shape conditions. To visualize the response, we provide
word-maps of the adjective data (Fig. 6), in which word
frequency maps to word size and low-instance words are
chosen at random to fill out the graphic (tagcrowd.com).
Note that during the LINE segments, the two orientation
settings are equivalent. All path types were called ‘smooth’
and ‘slow,” but as you can see in Fig. 6, people seem to
easily distinguish the linear from the sinusoidal pathways.

Sinusoidal motion with differing orientation settings pro-
duced subtly different word maps. When the robot is looking
along the direction of motion (path orientation), additional
words include ‘searching’ and ‘explorative.” When it looks
toward the beverage stand (goal orientation), additional
words include ‘hesitant’ and ‘uncertain.’ Perhaps side-to-
side motion with goal-orientation can create a back channel
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Fig. 6. Word-maps of adjectives subjects used to describe paths: 1) LINE,
2) SINE while facing goal, and, 3) SINE while looking along the path.

indicating second thoughts about achieving its known goal.
In all cases the descriptions indicate that people interpret
varied path shape and orientation qualities as communicating
aspects of the robot’s internal or task state.

Subject Interpretation of Path Shape Changes

Our final question involved understanding how subjects
interpret changes in the robot’s motion style, e.g., when the
motion setting goes from indirect to direct or visa-versa.
We provided subjects with videos of SINE-LINE and LINE-
SINE paths only (both orientation conditions), and made the
following request:

Question 3: “Describe what is happening in the video.
Why is there a transition point?”

Table V provides representative samples of the 36 replies.
In these responses, we see explanations of:

o SINE-LINE as scanning, exploring or correcting,

o LINE-SINE as erratic, cautious, careful

It is interesting to note that there were two instances in
goal orientation where subjects did not notice a transition
point, probably because the constant speed toward the goal
and goal orientation made for a smooth transition between
path shapes. We will refer back to these responses as we
interpret our numerical results in the following subsection.

VIII. RESULTS II: QUANTITATIVE

In this subsection, we review our three quantitative sur-
veys. First, we assess how well our chosen path shapes map

TABLE V
SUBJECT INTERPRETATIONS OF THE TRANSITION POINT

SINE-LINE

“It seems that the robot is first scanning the area before ascertaining
that the beverage stand is its sole target.” (path)

“The robot is exploring the room during the first half of its path.”
(path)

“The robot goes the wrong way, then corrects itself.” (path) “The
transition point happened because the robot finally got its positioning
in line with stand” (goal)

“The robot is exploring the room. That is why it is taking an indirect
path to the stand.” (goal)

LINE-SINE

“A robot moves across a room towards a beverage stand...but the robot
seems to move sort of erratically and does not go directly there.” (path)
“A robot starts toward the beverage stand. The robot can’t move
diagonally so he has to come forward and then turn to reach the
beverage stand.” (path)

“The robot is moving directly during the first half of its path. At that
point it becomes cautious; that is why it then takes an indirect path to
the stand.” (goal)

“The robot makes its way slowly, carefully changing its direction as
if it had a sensor, until it reaches its destination” (goal)

Mean Directness of Compound Paths

3
1 goal
2 orientation

1 M path
orientation

0 I I ! r
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line-line sine-sine

line-sine sine-line

Fig. 7. Mean Directness, N=86 (-3=Very Indirect, 3=Very Direct), Note
that line-line orientations should result in equivalent behaviors.

back to Laban Space concepts of direct and indirect. Second,
we assess the impact of path shape on people’s impression
of when the robot had become aware of the goal. Thirdly,
we quantify the inner state attributions people make about
the robot’s compound path motions, using adjectives from
the qualitative responses.

Space Effort Results: Direct/Indirect Legibility

The inspiration for our initial work comes from the Space
Effort, thus the first analysis of compound paths is to evaluate
whether people indeed found LINE to be direct and SINE
indirect. We use a 7-point semantic differential scale (-
3=Very Indirect, +3= Very Direct) to answer:

Survey 1: “How would you describe the robot’s motion?”

Fig. 7 shows linear paths are strongly associated with Very
Direct labels and sinusoidal paths with Somewhat Indirect
labels, regardless of orientation setting. These values were
what we had hoped for; the sinusoidal paths are seen as
approaching a goal overall, but taking an indirect path to get
there.

Statistically, when we run a 3-way ANOVA to evaluate
whether segmentl, segment2 and/or orientation setting can
predict subject directness ratings, we find a main effect



from both segments (in other words they are statistically
significant predictors of subject directness labels) and a trend
from orientation (segmentl p < .0001 F(1, 21.3), segment2
p <.0001 F(1, 35.9)). Segment2 has an even higher F-value
than segmentl, so you might infer that the final value of the
path is most important in rating Directness. While orientation
appears to play a role when there are path shape changes in
Fig.7 with the goal orientation being read as more neutral,
and the path orientation for both being read as more indirect,
statistically, orientation does not predict directness ratings.

We also find a strong interaction effect between segmentl
and segment2 (p < .0001, F(1,17.1)). An interesting obser-
vation is that the path orientation of LINE-SINE is rated
to be the most indirect of all compound paths, while the
SINE-LINE goal path is rated to be neutral. So, a robot
that approaches its target then veers away is being actively
indirect, whereas a robot that has an unclear goal that
becomes clear might have been trying to be direct the whole
time. As has been previously shown in the section 5.2.5
open-ended question results, people apply storytelling to the
sequences of movement, which is probably the explanation
for these heightened ratings.

Space Effort Results: Goal Knowledge

In this section, we assess whether compound paths impact
people’s reading of when the robot has detected or acquired
information about its goal. We asked participants to watch
their assigned video and answer the following question:

Survey 2: “When do you think the robot acquires
knowledge of the goal?”

A: Before the video begins

B: Toward the start of the path

C: Toward the middle of the path

D: Toward the end of the path

E: Never

We obtain 86 labels distributed across compound path and
orientation conditions. This time, our three-way ANOVA
of segmentl, segment2 and orientation finds a main effect
from segmentl and segment2 and a trend from orientation
(segmentl p < .0001 F(1, 18.2), segment2 p < .0001
F(1, 24.9), orientation p=0.095 F(1,2.8)). So orientation
influences people’s attributions about the robot’s relationship
with its goal more than people’s ratings of the directness of
the path. There is also an interaction effect between segments
(p=0.0167, F(1,5.98)).

We present our full results in Fig. 8. We again find that
segment order matters. SINE-LINE appears to detect the goal
toward the middle of the path; it explores, finds its target and
proceeds to move in a straight line. People seem confused
about LINE-SINE, with a wide distribution of responses that
is consistent with the varied qualitative descriptions (Table
V).

Almost all subjects label the LINE-LINE path as knowing
about the goal before the start of the video. The most
common SINE-SINE rating implies the robot discovered the

When robot acquires knowledge of goal

0 2 4 6 8 10 12 14
I 4 | 4 | 4

M before start
line-line B toward start

toward middle
® toward end

. . W never
line-sine

sine-line

sine-sine
14

Fig. 8. Counts for when robot acquires knowledge of goal, divided by
compound path type, N=86

goal toward the end of the path, i.e., when the robot came
in final proximity of the beverage stand and stopped.

The initial linear segment may be why some said ‘before
the start,” the change may be way others say ‘middle,” and
the finishing sinusoid may be why the rest choose ‘toward
the end’ or ‘never.” Note that subjects only choose ‘never’
in compound paths that end with a SINE.

Space Effort Results: Attributions

Finally, we explore attribution concepts collected in Ques-
tion 2 (Fig. 6. We asked subjects to respond to the following
statements in random order using a 5-point Likert scale,
where -2=Disagree, and +2=Agree:

Survey 3.1: “The robot’s motion is focused.”
Survey 3.2: “The robot’s motion is hesitant.”
Survey 3.3: “The robot’s motion is explorative”

Focused: Subjects have strong feelings about linear seg-
ments, seeing them as highly focused. The compound paths
containing sinusoids have more subtle responses (Fig. 9).
SINE-SINE is rated least focused (all other paths rated some-
what focused). Overall, the focused ratings have a main effect
from all three input variables: segmentl p=0.0002 F(1,15.5),
segment2 p=0.0024 F(1,10.1), orientation p=0.0127 F(1,8.1).
This is the only statistical analysis that does not show an
interaction effect between segments.

Explorative: SINE-LINE is rated most explorative — the
contrast tells a story. This is supported by the statistical
results, in which we again find three main effects: segmentl
p=0.0004 F(1,13.9), segment2 p=0.0275 F(1,5.1), orientation
p=0.0012 F(1,11.5), but this time also an interaction effect:
segl*seg2 p=0.0018 F(1,10.7).

Hesitant: SINE-LINE is also rated most hesitant. In fact,
no other paths had positive hesitance ratings. This time, we
find a very high impact of the initial segment and orienta-
tion: segmentl p=0.0247 F(1,5.3) and segl*seg2 p=0.0018
F(1,4.5).
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This result shows the power of storytelling. We had
expected that LINE-SINE would be read as hesitant, but
perhaps recalibrating to the target or losing functionality (i.e.,
behaving erratically) was a more dominant interpretation,
perhaps thinking of the robot as a machine rather than an
agent. The SINE-LINE ratings indicate that the first segment
plays a greater role in predicting hesitance (delay before a
following action).

IX. FEATURE CALIBRATION

In this section, we briefly analyze how varying sinusoidal
amplitude impacts subject directness ratings and attributions.
Our hypothesis was that ratings would vary linearly between
SINE and LINE. To evaluate this hypothesis, we choose a
low amplitude sinusoidal path at half the amplitude of SINE,
that we call %SINE (see definitions in Table II).

Calibrating Directness

We first analyze the impact of lower amplitude sine waves
on subject Directness ratings. We present our results in Fig.
11, in which the SINE and LINE data matches up to Fig.
9, but also includes the data from the %SINE labels. In this
case, orientation setting appears to impact people’s detection
of low-amplitude sinusoidal motion, probably because of the
subtlety of the side-to-side motion otherwise.

In goal orientation, people rated the %SINE similarly to
LINE baseline, however, in path orientation, people rated

Attributions to Baselines

Whestiant ™ focused explorative
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%SINE closer to SINE. Perhaps this new segment %SINE
appears to be more like the natural variation present in human
gait, and maintains many of the Directness attributes of a
linear segment in goal orientation.

Because of the subtlety of the path motion, it seems that
orienting along the path (path orientation) was necessary
to reveal the shaping. In a 2-way ANOVA of path-shape
and orientation, however, only path-shape showed statistical
significance: p < .0001 F(2,23.5). The directionality of the
means, however, suggest that feature calibration will play an
important role in assuring the readability of a particular CLE
feature.

How Calibration Impacts Attributions

Next, we assess attributions, and how they might vary with
changing sinusoidal amplitude. We plot the mean response or
the three basic path shapes in Fig. 11. In a 2-way ANOVA
of path-shape and orientation, we find a main effect from
both path-shape and orientation across all adjectives.

Focused and Explorative appear to vary linearly in the
expected directions, consistent with our initial hypothesis.
Subjects rated SINE most explorative, and LINE the most
focused. In contrast, if we look at the Hesitant mean, we
find that %SINE is rated to be the most hesitant of the
baseline paths. This result goes against our initial hypothesis.
Apparently, expression does not always vary linearly between
sinusoidal extremes. A possible explanation is that lower
amplitude oscillation appears to present a backchannel, as
if the robot has a subconscious dread of the goal that it is
nonetheless approaching.

X. EXPLORATION OF MOTION CONTEXT

Before summarizing our findings, we briefly step back to
justify whether this scenario would be relevant in a true
restaurant or bar environment. To do so, we conducted an
ethnographic interview with a local bartender after demon-
strating the robot’s motion. We asked him whether these
kinds of approach paths resonated with anything he expe-
rienced working in a restaurant setting. He said,

“You can usually tell by the way people walk
into the bar how to respond to them. If they’re



looking around and acting unsure of themselves...
you offer them a menu... If they walk straight to
the bar, making eye-contact the whole way and
grab a stool, you ask them if you can take their
order, because they probably know exactly what
they want to drink.”

These descriptions have clear parallels to the indirect and
direct Laban Space motion feature (as well as Laban Time,
but we’ll save that for a future paper). Since the motions
we evaluated in our study mapped more to a robot server,
however, we also asked about how restaurant co-workers
utilized expressive motion and its impact. He said he found
it easy to interpret a server’s sense of urgency from their
approach style:

“If the restaurant’s not busy, the servers will put
in an order and chat while it’s being made. If it’s
busy, they rush over, or try to make eye-contact,
and you can see them lean against the bar.”

He said he would occasionally ask a server if they needed
something special if they looked stressed, but that while he
was aware of the servers’ attitudes toward getting the drinks,
he was not aware of changing his working pace because of
them. He did say, however, that their approach style impacted
his likelihood to socialize with them.

Although this was an interview with a single person, we
find it promising that he indicated parallels in interpreting
both customer and coworker approach path motions. The
interview also helps identify areas for extending this work:
human tracking and social bonding.

XI. CONCLUSIONS

The central idea of this paper was to evaluate how people
interpret robot attitudes via their motion patterns. We have
found that path shape influences peoples attributions toward
the robot (e.g., confidence, hurry), and that path shape
changes provide contrasts that are particularly salient to
people, in particular:

o SINE-LINE path shape changes help illustrate the mo-
ment a robot acquires knowledge of its goal; it can also
indicate hesitance.

o Linear motion is easiest for people to interpret, with
high means in all tests, and positive ratings for focused
and direct.

o LINE-SINE path shape changes seem harder for people
to interpret, but with goal orientation suggests that the
robot is broken or lost track of the goal.

o Calibration is important as changing amplitudes of a
feature impacts its legibility.

Given people’s rapid ability to interpret robot motion at a
glance, the the significant effect of segment ordering, more
robot designers can begin to leverage this communication
modality in interaction contexts. As suggested by our ethno-
graphic interview, it seems likely that robot motion expres-
sions will be useful for both coordination and camaraderie.

ACKNOWLEDGMENT

Thanks to Manuela Veloso, Joydeep Biwas, Laura Brooks,
and the CORAL Lab.

REFERENCES

[1] S. Brownlow, A. R. Dixon, C. A. Egbert, and R. D. Radcliffe,
“Perception of movement and dancer characteristics from point-light
displays of dance,” The Psychological Record, vol. 47, no. 3, p. 411,
1997.

[2] A. P. Atkinson, W. H. Dittrich, A. J. Gemmell, and A. W. Young,
“Emotion perception from dynamic and static body expressions in
point-light and full-light displays,” Perception, vol. 33, no. 6, pp. 717—
746, 2004.

[3] F. Abell, F. Happe, and U. Frith, “Do triangles play tricks? attribution
of mental states to animated shapes in normal and abnormal develop-
ment,” Cognitive Development, vol. 15, no. 1, pp. 1-16, 2000.

[4] F. Castelli, F. Happé, U. Frith, and C. Frith, “Movement and mind: a
functional imaging study of perception and interpretation of complex
intentional movement patterns,” Neuroimage, vol. 12, no. 3, pp. 314—
325, 2000.

[5] H. H. Kelley, “The processes of causal attribution.” American psychol-
ogist, vol. 28, no. 2, p. 107, 1973.

[6] A. Engel, M. Burke, K. Fiehler, S. Bien, and F. Rosler, “How moving
objects become animated: the human mirror neuron system assimilates
non-biological movement patterns,” Social neuroscience, vol. 3, no. 3-
4, pp. 368-387, 2008.

[7]1 F. Heider, “Social perception and phenomenal causality.” Psychologi-
cal review, vol. 51, no. 6, p. 358, 1944.

[8] W. Ju and L. Takayama, “Approachability: How people interpret
automatic door movement as gesture,” International Journal of Design,
vol. 3, no. 2, 2009.

[9] H. Knight and R. Simmons, “Laban head-motions convey robot
state: A call for robot body language,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE, 2016, pp.
2881-2888.

[10] ——, “Expressive motion with x, y and theta: Laban effort features for
mobile robots,” in The 23rd IEEE International Symposium on Robot
and Human Interactive Communication. 1EEE, 2014, pp. 267-273.

[11] T. Nakata, T. Mori, and T. Sato, “Analysis of impression of robot
bodily expression,” Journal of Robotics and Mechatronics, vol. 14,
no. 1, pp. 27-36, 2002.

[12] M. Sharma, D. Hildebrandt, G. Newman, J. E. Young, and R. Es-
kicioglu, “Communicating affect via flight path exploring use of the
laban effort system for designing affective locomotion paths,” in 2013
8th ACM/IEEE International Conference on Human-Robot Interaction
(HRI). IEEE, 2013, pp. 293-300.

[13] T. Lourens, R. Van Berkel, and E. Barakova, “Communicating emo-
tions and mental states to robots in a real time parallel framework
using laban movement analysis,” Robotics and Autonomous Systems,
vol. 58, no. 12, pp. 1256-1265, 2010.

[14] K. Nishimura, N. Kubota, and J. Woo, “Design support system for
emotional expression of robot partners using interactive evolutionary
computation,” in Fuzzy Systems (FUZZ-IEEE), 2012 IEEE Interna-
tional Conference on. 1EEE, 2012, pp. 1-7.

[15] L. Takayama, D. Dooley, and W. Ju, “Expressing thought: improving
robot readability with animation principles,” in Proceedings of the 6th
international conference on Human-robot interaction. ACM, 2011,
pp. 69-76.

[16] A. D. Dragan, K. C. Lee, and S. S. Srinivasa, “Legibility and
predictability of robot motion,” in 2013 8th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). IEEE, 2013, pp.
301-308.

[17] R. Laban, “Modern educational dance. revised by 1,” Ullmann. Lon-
don: MacDonald and Evans.(First published 1948), 1963.

[18] A. Lim, T. Ogata, and H. G. Okuno, “Towards expressive musical
robots: a cross-modal framework for emotional gesture, voice and
music,” EURASIP Journal on Audio, Speech, and Music Processing,
vol. 2012, no. 1, pp. 1-12, 2012.

[19] M. Saerbeck and C. Bartneck, “Perception of affect elicited by robot
motion,” in Proceedings of the 5th ACM/IEEE international conference
on Human-robot interaction. 1EEE Press, 2010, pp. 53-60.

[20] J. Biswas and M. M. Veloso, “Localization and navigation of the
cobots over long-term deployments,” The International Journal of
Robotics Research, vol. 32, no. 14, pp. 1679-1694, 2013.



