
  

  

Abstract— In our experiment, two autonomously moving 
costumed robots visit 256 offices during a ‘reverse’ trick-or-
treating task close to Halloween. Our behavioral data supports 
the idea that people interpret a robot’s non-verbal cues, as the 
robots’ costuming and baskets of candy seem to have 
communicated an implicit offer of candy. In fact, one third of 
our detection instances occurred during robot transit, i.e., while 
the robots were making no verbal offer. We find that candy 
accessibility dominates any social influence of robot orientation 
and that robot speed influences both whether people will 
interrupt a robot in transit (slow more interruptible) and 
whether they will respond to its verbal offer (fast more salient).  

I. INTRODUCTION 
Our research interest is how robot motion and physical 

cues, such as orientation to a goal, influence human response 
to a mobile robot. We are also curious how these cues impact 
people’s attributions about robots, and whether they can 
clarify or confound human interpretation of a robot’s goals. 
As a naturalistic exploration of this topic, we implement a 
candy-delivery behavior on two autonomous 1.3-meter-tall 
CoBot robots [1] with four-wheeled omnidirectional bases 
and baskets for transporting objects (Fig. 1). We also added 
down-facing sensors that we use to detect when people are 
taking candy.  

This is the third year that the CoBots have performed a 
reverse trick-or-treating behavior close to Halloween, but the 
first time that we varied its motion characteristics 
experimentally. During the task, the robots travel to all the 
offices on each floor, verbally offering people to take candy 
upon its arrival to each. Deployed since 2009 to perform a 
variety of tasks, they came pre-installed with baskets (either 
in the front or the back of the robot) that we filled with candy 
for the experiment. The robots are capable of rotation and 
translation, thus they are ideal for exploring the impact of 
simple motions on human perceptions and behavior.  

Our variables included robot orientation to the office 
(social or asocial) and robot navigation speed (fast or slow). 
Our hypotheses were: 1) that people at the offices would take 
candy more often from robots with natural social facing (i.e., 
looking directly into the offices, instead of away), and 2) that 
the robots moving at fast speed would seem more dedicated 
to their tasks. Surprisingly, we find that a robot’s social 
facing has no impact on whether or how fast people take 
candy. Instead, people are most influenced by the proximity 
of the candy-basket. Consistent with our second hypothesis,  
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Figure 1.  The robots: CoBot2 costumed as a witch with a back-installed 
candy basket, CoBot3 costumed as a magician with front-installed candy 
basket. Candy-taking detectors installed above the baskets facing down. 

people took candy more often when a robot approached an 
office at higher speed.  

We were also surprised to discover that one-third of the 
candy-taking instances occurred while the robots were in 
transit, in other words, when they were not verbally offering 
candy. While the orientation condition and basket location do 
not impact the transit path, we did find that hallway candy-
taking behavior did change in regard to the robot’s fast or 
slow speed condition. In fact, people take candy over twice as 
often from a robot traveling at slow speed, even when 
accounting for relative time spent traveling. 

II. RELATED WORK 

Autonomous robots are increasingly entering human 
environments, from shopping center guides [2] to café 
companions [3], from delivery robots in our hospitals [4] to 
university resources [5][6], and cleaners of our homes [7]. 
Whether sharing common spaces or engaging residents and 
bystanders directly, these robots often benefit from a shared 
understanding of social rules [3][6], and when these rules do 
or do not apply to particular robots in particular task contexts.  

As the examples above highlight, more and more 
researchers are bringing their research studies out of the 
laboratory. While the challenge of such investigations is that 
natural environments are complex and unexpected confounds 
may enter the experiment (e.g. how many people took candy 
from the CoBot robots in the hallway during transit), they 
also present realistic versions of the target environments for 
which we design social robots. The unique contributions of 
our work include the real-world autonomous setting in which 

Taking Candy from a Robot: Speed Features and Candy 
Accessibility Predict Human Response 

Heather Knight, Manuela Veloso, Reid Simmons, Members, IEEE 

Heather Knight
The 24th IEEE International Symposium on Robot and 
Human Interactive CommunicationAugust 21-September 4, 2015. Kobe, Japan.



  

we conducted our experiment, and our specific insights about 
expressing robot body language via motion.  

While previous research has investigated aspects of robot 
motion communications, such as proxemics [8], social 
navigation [9], and human attributions about combinations of 
robot motion characteristics [10], our work explores simple 
but generalizable principles of how robot motion and 
orientation impacts human behavior during a naturalistic 
robot task. For example, in the author’s previous work 
applying Laban Effort principles to robot motion [11], 
orientation was a clear feature used by study participants to 
interpret the agent’s expression. In this experiment, however, 
we found that though people made note of a robot’s social 
orientation, that orientation did not impact human behavioral 
response. We will explore these diverging findings further in 
our results and discussion sections. 

III. BACKGROUND: THE COBOTS 

Since 2009, the CoBot robots have performed a variety of 
tasks throughout our robotics and computer science 
buildings, including meeting and guiding someone to a 
location, delivering objects and/or messages [12], and serving 
as semi-autonomous tele-presence agents [13]. Just over 1.3 
meters tall, the CoBot robots move via their four-wheeled 
omni-directional bases. Although researchers can monitor 
robot operations remotely via localization and local video 
data, the robots seldom require human intervention.  

The CoBots autonomously complete their tasks, using 
depth cameras and laser rangefinders for localization and 
navigation [14].  When necessary, they can seek human 
assistance via symbiotic autonomy [6], e.g., asking 
bystanders for help pressing the elevator button. An on-board 
tablet provides the computational platform to run the robot’s 
task behaviors, as well as the algorithms for sensing and 
control. It also provides a graphical and speech-based 
interface for interaction.  

IV. AUTONOMOUS CANDY DELIVERY 

In this experiment, we used two of the four existing 
CoBot robots: CoBot2 and CoBot3. While the hardware for 
the two robots is mostly identical, because of previous work, 
their basket locations differ (Fig. 1), namely Cobot2 has a 
back-installed basket, while Cobot3 has a basket installed in 
the front. We also added customized Halloween costumes, 
both consisting of a cape and a hat, but differing in theme and 
cape length so as to not interfere with candy access. 

In this section, we overview the reverse trick-or-treating 
behavior that the two robots autonomously performed, then 
describe our setup to detect when people were taking candy 
from the robots. 

A. Reverse Trick-Or-Treating Program 
For the third year in a row, researchers sent CoBot robots 

to deliver candy to people’s offices in costume. This year was 
the first year that more than one CoBot was in operation at 
the same time, and it was the first year that we varied robot 
motion conditions such that we could analyze the impact of 
our experimental features on people’s candy-taking behavior. 

The reverse trick-or-treating task can be called with any 
floor currently included in the CoBot’s navigation system, 

automatically loading a desired sequence of office locations, 
using ascending numerical order. At each step, the robot sets 
its next target office location, loads its experimental 
conditions (randomly choosing between fast vs. slow speed, 
and social vs. asocial orientation), then attempts to navigate 
to that location at the appropriate speed.  

Upon arrival to the office, the robot centers itself at the 
door, sets its orientation angle to the current setting, and says 
“Knock, knock, is anyone there?” and/or “Happy Halloween! 
Please take some candy, then press the done button.” The 
robot’s verbalization also prints out on its tablet touch screen. 
If there is no touchscreen response, the robot will wait for up 
to 30 seconds then leave the office, otherwise it leaves when 
the user presses the “Done” button. Upon departure, it loads 
its next office destination and experimental settings, the 
process continuing until it has visited the full set of offices 
for that floor, also returning to offices with no response. 

During operation, the CoBot data logging [1] relevant to 
this experiment included: sequences of offices visited, robot 
transit times, robot task durations, experimental condition 
settings, and candy-taking detection distance data (including 
raw signal, estimated distance and timestamps).  While the 
robot operations were autonomous, there was often a 
researcher on site down the hallway who could observe 
and/or overhear people’s reactions to or comments about the 
robots. Experimenters only intervened if the robot was stuck, 
needed more candy or, on some floors, required a door to be 
opened to enter a corridor.  

B. Detection Methodology 
Each CoBot was equipped with Sharp IR distance sensors  

(range: 10cm-80cm), which we installed above each candy 
basket. Alternative sensors might include a weight sensor 
(would be better for running average, but less reliable for 
candy-taking) or a vision system tracking hands (high 
algorithmic load, less privacy). Though the IR sensors are 
simple, they provide complex insights into human behavior, 
while allowing users to remain anonymous.  

  
Figure 2.  Sample detections of people taking candy, (left) two detections, 

(right) one detection. Straight line presents threshold for leftmost detection. 

The candy-taking sensor publishes ~every 50ms (a rate of 
20 frames/sec). Using this data, we 1) estimate candy levels 
(running average over one minute of data), and 2) detect 
when people put their hand in the basket to take candy. To 
accomplish the second, our system looks for signals lasting at 
lest 150ms that exhibit a minimum of 7cm deviation from 
running average (Fig. 2). We parameterized these numbers to 
eliminate false positives (as determined by human labels). In 
other words, we have a conservative detector, in which some 
candy-taking instances may be missed but there are few 



  

false-positives (final rate was 2% or 3/151 detections, by 
human annotation).  

As part of the detection process, we group detections into 
a single instance if there is a gap of <500ms between them 
(threshold determined from human behavior samples). If the 
detections are separated by more than that, they are 
considered multiple detections, either from one person taking 
candy several times, or more than one person taking candy. 
We also note the duration of each detection instance in 
frames (20 frames/sec), as longer detection durations may 
indicate several people taking candy in overlapping intervals, 
and/or a more relaxed manner of a single person taking 
candy. We display sample graphs of our detections in Fig 2. 

V. EXPERIMENT 

In our analysis, we intended to analyze the impact of our 
experimental conditions on people’s candy-taking behavior 
during two task contexts: at office or in transit. When the 
robots were at an office, they would verbally offer the 
occupants candy, but when they were in transit, they made no 
verbal offer. In the following subsections, we review the 
experimental conditions, then overview our data collection. 

A. Experimental Conditions 
Our experimental conditions include orientation (social 

indicates orienting toward office or asocial indicates 
orienting away) and speed (slow or fast). The experimental 
conditions were selected at random each time an office 
location was added to a robot’s task planner.  

• Orientation: When a robot arrived at an office, it 
would either face directly into the office at 0 degrees 
(social, i.e., toward interaction partner) or directly 
away from the office at 180 degrees (asocial), then 
ask the occupants if they would like some candy. The 
social and asocial labels are meant to be category 
abstractions rather than dictionary definitions. 

• Speed: The robots either traveled at 0.3 m/s (the slow 
condition) or 0.75 m/s (the fast condition), this speed 
setting was relevant to both its transit between offices 
speed and its approach speed to an office. Motor 
noise increases with speed. 

We also track candy location. Each robot had a permanent 
costume and candy basket. In our analysis, we will refer to 
candy location as front basket and back basket (Fig 3). There 
is a possibility that the costuming impacted human response, 
but we tried to make them fairly similar. Cobot2 wore a short 
cape and witch hat, with a back-installed candy basket, while 
Cobot3 wore a long cape and magician hat with a front-
installed basket (Fig. 1). 

   
Figure 3.  Full set of orientations (social is toward or asocial is away from 

office) and candy-basket permutations. 

B. Data Collection Overview 
The two robots successfully visited 256 offices (302 paths 

attempted, extra paths due to duplicated attempts at reaching 
the same office after localization corrections or lack of 
response) across four floors of our computer science and 
robotics buildings (Table 1). The robots traveled a combined 
distance of ~2.3km and time of 4 hours, 34 minutes and 24 
seconds (Fig. 3). In total, they detected 148 instances of 
people taking candy, dispersing over 27 lbs. of candy. 

TABLE I.  REVERSE TRICK-OR-TREATINGS STATS 

Floor Duration* Distance** #Offices  # Detects 

GHC6 5871 967 99 30 

GHC9 5114 584 100 30 

NSH4 3042 427 55 33 

GHC7 2437 310 48 55 

 16464  2288   302  148 

*Duration in seconds including startup time, **Distance in meters including travel from other floors 

 

  
Figure 4.  Birds-eye view of the four floors in which Cobot2 and Cobot3 

visited offices to offer people candy, overlayed with their transit paths. Top 
row: GHC6 and GHC 9 (Cobot2), Bottom row: NSH4 and GHC7 (Cobot3) 

 A further breakdown of the detection contexts by floor 
in Table I help suggest the social composition of each, e.g., 
how many people took candy at the offices may reflect how 
many people were in their offices to begin with, and the 
number of transit detections may relate to the number of 
people were passing through the hallways. Logistically, it 
made sense to assign particular robots to particular floors, but 
population differences in the floors visited and differing 
times of days of those visits may have also impacted the total 



  

number of candy-detection instances we collected. As 
annotated in Fig. 4, Cobot2 visited GHC6 and GHC9, while 
Cobot3 visited NSH4 and GHC7. 

C. Representative Detection Signal 
In Fig. 5, we present an example candy-taking-detection 

signal from the entire set of GHC9 data. The candy level 
varies as candy gets taken, shifts or is added. The other three 
files have similar detection distributions. There is slightly 
more ambient noise in the Cobot3 (+/-3cm) than Cobot2 
signal (+/-2cm), perhaps due to vibration, though both are 
well under the detection threshold. 

   
Figure 5.  Detection Results for GHC9: Signal in red, running average in 

black and blue X’s marking the 30 candy-taking detection instances. 

VI. RESULTS 

In this section we review user comments and quantitative 
results. Our statistical analyses include Pearson Chi Square 
tests of correlations between categories of data (e.g., X 
conditions strongly relate to the presence of Y), and ANOVA 
analyses seeking to establish relationships between mean data 
samples (X conditions predict the likelihood of Y level of 
outcome).  

We will use instance to refer to candy detection events and 
frames as a duration unit of how long people spend taking 
candy (20 frames/sec, i.e. 50ms each). At the offices, candy 
accessibility was the best predictor of whether people would 
take candy at the office and people responded most often to 
fast robots addressing them directly. During transit, people 
more often interrupted slow robots. 

A. Qualitative Results 
Study conductors were often in earshot during robot  

operation. When the robots were facing the wrong direction 
many people commented anecdotally that a robot had “made 
a mistake,” “miscalculated,” or “had a bug.” This indicates 
that they know the robot is facing the incorrect direction in 
the asocial condition.  In addition, faster robot motions may 
have intimidated people. This is supported by anecdotal 
comments that the fast robot was “kind of scary,” and “I 
wasn’t sure it was going to stop.” Finally, study conductors 
often overheard people greeting or thanking the robots after 
taking candy from them in the hallway, despite the lack of 
verbal offer. They are probably inferring an implicit offer of 
candy via non-verbal indicators and prior knowledge, feeling 
no compunctions about stopping, greeting, and/or inviting 
their friends to also take candy from the robot. 

B. Impact of Task Context 

During their candy delivery activities (Table II), the 
robots spent slightly more time (41.7%) in transit than at 
offices (31.3%), 1.3 times as much. They also spent just over 
a quarter of their time doing something else, like beginning/ 
ending programs, pausing for human assisted re-localization 
(if stuck), or refilling the candy basket.  

TABLE II.  TOTAL TIME DISTRIBUTION BY TASK CONTEXT  

 In Transit  At Office Other 

Total Time (s) 6859 5160 4445 

% Time 41.7% 31.3% 27.0% 

 

Overall, people took candy from the robots almost twice as 
often when they were visiting offices than while they were in 
transit (Table III). It makes sense that more detections 
occurred at the offices because that is the only location where 
the robots make a verbal offer for people to take candy. Thus, 
the surprising result is that so much of the candy-taking 
(more than one-third) occurred while the robot was in transit. 

TABLE III.  INSTANCES (N=148) AND DURATION OF CANDY-TAKING  

 Instances # Frames 

Office 93 (62.8%) 2440 (60.8%) 

Transit 55 (37.1%) 1574 (39.2%) 

TABLE IV.  REVERSE TRICK-OR-TREATINGS STATS 

Location Time Transit Detects Office Detects Total  

GHC6 10am 18 12 30 

GHC9 1pm 4 26 30 

NSH4 1pm 11 22 33 

GHC7 3pm 22 23 55 

C. Impact of Robot Orientation 
Our first experimental variable was robot orientation upon 

arrival to the office: social or asocial. We also track candy-
basket location: front-basket or back-basket. We diagram the 
four possible permutations of orientation and basket location 
in Fig. 6. We only look at office candy-taking detections, as 
robot orientation angle only presents itself upon robot arrival 
to each office. 

We find that people's main drive in responding to the robot 
is candy access not orientation toward the office door. Our 
evidence is that people respond most quickly (Table VII) to a 
robot presenting the candy basket in closest proximity, 
regardless of overall body facing. Duration of candy-taking 
was strongly predicted by which robot was making the offer 
(Table VI), indicating either a strong influence of basket 
location or highlighting population differences among the 
differing floors at the times of day they were visited. We also 
present statistical analyses that provide further insight into 
this data. 

Contradicting our first hypothesis, there are slightly more  
(1.2 times as many) candy detections in response to the robot 



  

in the asocial condition as the social condition (Table V). If 
we look at the numbers more closely, most of this effect is 
due to the heightened likelihood of people taking candy from 
the asocial orientation robot with the back-facing basket.  

TABLE V.  NORMALIZED DETECTIONS BY ORIENT AT OFFICE (N=93): 
RATIO OF DETECTIONS TO CANDY OFFERS WITHIN EACH CONDITION 

 Back-basket Front-basket All baskets 

Social Orient 16.9% (14 
detects / 83) 

65.0% (26 
detects / 40) 

33% 
(40/123)  

Asocial Orient 29.6% (24 
detects / 81)  

55.8% (29 
detects / 52) 

40% 
(53/133) 

All orientations 23% (38/164)  60% (55/92)  

 
To evaluate our detection findings statistically, we 

consider two measures: how well robot orientation predicts 
whether people will take candy (Pearson Chi Square), and 
how well orientation predicts number of detections, i.e., how 
many times people will take candy (ANOVA).  

We find two trends supporting the information value of 
robot orientation toward predicting people’s likelihood of 
taking candy from a robot with a back-facing basket 
(comparing the 16.9% ratio to 29.6% ratio in Table V). 
Specifically, a Pearson test correlating orientation condition 
to presence of candy-taking detection(s) across all office 
visits with back-facing baskets has a p-value of 0.0648 
(N=164), thus there is a trend relationship between 
orientation and Boolean detection of candy-taking instances.  

Our second test is to run an ANOVA analysis to see if 
orientation condition can predict number of detections, again 
within the office-detections with back-facing baskets, finding 
a p-value of 0.0929, another statistical trend. Both tests 
support the relationship between orientation and candy taking 
in the back-facing office setting. Namely, people are more 
likely to take candy from a robot with a back-facing basket in 
the asocial orientation rather than social one, because that 
means the candy is more accessible and visible. 

Using a similar approach, we also find that robots facing 
the office with a social orientation condition are more likely 
to entice people to take candy if they have front-facing 
baskets (comparing the 16.9% ratio with the 65.0% ratio in 
Table V). Limiting our analysis to whether basket-location 
can predict detections within each of the two orientation 
conditions, we find that basket location has a strong 
relationship with whether people take candy from robot in 
social orientation (N=123). In fact, the Pearson Test shows a 
p-value of 0.0003* (very significant). An ANOVA analysis 
looking at the effect of basket location on predicting candy-
taking detections for robots in social facing (also N=123) also 
finds significance with a p-value of 0.0019*. Again, candy 
accessibility dominates response, this time with two 
statistically significant results.  

All of the above results support that people were least 
likely to take candy from a robot in the social orientation 
condition with a back-facing basket (perhaps because it is 
confusing and less accessible). Statistically, the remaining 
results about likelihood of taking candy are fairly similar. For 
example, basket location does not correlate with whether or 

how often people will take candy from a robot in the asocial 
condition (comparing the 29.6% with the 55.8% in Table V), 
with respective p-values of 0.2266 (Pearson Test) and 0.2035 
(ANOVA). There is a similar lack of significance when 
evaluating whether orientation condition predicts whether 
people will take candy from a robot with a front-facing 
basket, although numerically, Table V does show higher 
relative detection numbers for more-accessible social 
orientation + front-basket setup (65%) as compared to asocial 
+ front-basket (55.8%). 

Our next major finding is that people were more likely to 
take candy from the robot with a front-facing basket (60%), 
than the robot with the back-facing basket (23%), see Table 
V. Our theory is that it is more intuitive for the robot to be 
offering candy in the front, and it also makes sense that the 
earlier in the day visits (GHC6) and less social floors (GHC9) 
would find fewer people in their offices or open to 
interaction, as they are further from classrooms and transit 
corridors (Table IV). Our overall Table I numbers also show 
a lower ratio of candy-taking detections to offices visited for 
GHC6 and GHC9 (Cobot2 floors) than NSH4 and GHC7 
(Cobot3 floors). We see additional evidence that Cobot3 was 
more in demand xin Table VI, where mean detection 
durations more than double for the front-facing basket (more 
candy-taking may result in more overlapping detections). In 
fact, an ANOVA analysis of whether the basket-orientation 
alone can predict detection durations succeeds with a p-value 
of 0.0006*, i.e., high statistical significance. In contrast, 
orientation predicting detection duration has a p-value of 
0.7872, i.e., irrelevant. 

TABLE VI.  MEAN DETECTION DURATION BY ORIENT AT OFFICE* 

 Back-basket Front-basket All baskets 

Social Orient 12.6 (11.9std) 30.0 (29.8std) 24.0 (26.2) 

Asocial Orient 14.5 (15.1std) 38.0 (40.0std) 27.3 (33.5) 

All orientations 13.8 (14.0) 34.2 (35.7)  

*Duration in frames (every 50ms) 

Finally, we evaluate the mean time that the robots spent at 
the offices with detections across the orientation conditions in 
Table VII. Social orientation + front-basket and asocial 
orientation + back-basket result in the shortest office visits 
(i.e., people take the candy quickly and dismiss the robot 
when the candy is in closest proximity). As indicated by the 
qualitative results, the explanation for this data is not that 
people did not find the asocial condition normal, but rather 
that they cared more about the fact that there was candy 
present. 

TABLE VII.  MEAN TIME AT OFFICES  WITH DETECTIONS BY ORIENT & 
CANDY BASKET LOCATION* 

 Back-basket Front-basket All baskets 

Social  29.0 23.5 26.2 

Asocial  22.2 27.5 24.9 

All orientations 25.6 25.5 25.9 

*Time in seconds 



  

D. Impact of Robot Speed  
Our second experimental variable was robot speed 

condition: fast or slow. We find diverging results by context 
(at office versus in transit). Namely, people more frequently 
respond to a fast-moving robot when it approaches their 
office, but are more likely to take candy from a slow-moving 
robot in transit.  

We summarize our overall detection frequency results for 
how often people take candy from the robots by speed 
condition in Table VIII. By far, the lowest detection ratio 
occurred during fast transit (at a rate of 7.2%). The next 
lowest was for slow transit (27.6%), a large improvement 
over fast. The highest ratios occurred at offices, 41.1% for 
fast  and  31.8% for slow. Overall, people  took  candy  at  the 
offices most often, marginally preferring the fast robot at the 
office but generally avoiding the fast robot in transit. 

TABLE VIII.  NORMALIZED DETECTIONS BY SPEED & CONTEXT (N=148) 
RATIO OF DETECTIONS TO SAMPLES WITHIN EACH CONDITION 

 Office Transit All contexts 

Slow 31.8% (42 
detects / 132) 

27.6% (45 
detects / 163) 

29.5% 
(87/295) 

Fast 41.1% (51 
detects / 124) 

7.2% (10  
detects / 139) 

23%           
61/263     

All speeds 36.3% (93/256)  18.2% (55/302)   

 

Mean detection durations were congruent with our 
detection instances findings (Table IX). Namely, the average 
candy-taking duration for a slow-moving robot lasts longer 
during transit (33 frames), and the average detection duration 
for the fast-moving robot lasts longer at the office (29 
frames). In other words, in the speed conditions where people 
are more likely to take candy, they also spend more time 
taking that candy. This may occur because longer durations 
indicate more candy taking by a single or multiple 
individuals. For example, if three people take candy at 
overlapping intervals, there may be 4 seconds of continuous 
detection, while if just one did; it might be closer to 1.5 
seconds of detection. Longer duration might also reflect a 
relaxed attitude with which people take candy (which may be 
particularly relevant for the slow moving transit condition). 

TABLE IX.  MEAN DETECTION DURATION BY SPEED AND CONTEXT*  

 Office Transit All contexts 

Slow 22.1 (3.2 std) 32.6 (5.6 std) 27.6 (30.9) 

Fast 28.9 (36.5std) 14.0 (9.3 std) 26.5 (34.0) 

All speeds 25.9 (30.4) 29.2 (34.9)  

*Duration in frames (every 50ms) 

Impact of Robot Speed at Office 

As found in the previous section, people took candy 
slightly more often if the robot approached at high speed than 
when the robot approached the office more slowly (Table 
VIII).  Note that the robot speed condition set the overall 
transit velocity, which people in the offices would only 
visually or auditorily experience during the robot’s final 
approach to position outside their office doors.  

We next evaluate whether the higher frequency of taking 
candy from the robot approaching an office at high speed is 
statistically significant. A Pearson Chi Square Test of 
whether speed condition correlates with office candy-taking 
has a p-value of 0.141, not quite statistically significant, but 
close to a trend. We also perform an ANOVA analysis tying 
speed condition to the number of office detections, finding a 
p-value of 0.224 – not significant. After combining multiple 
detections (the 93 office detection instances occur at 41 
offices), we reduce our sample to N=41, out of a total of 256 
offices that robots visited successfully. We may just not have 
a large enough sample size.  

Accounting for opportunity cost (see Table X), people 
take candy 1.16 times as often from the fast robots 
approaching their office than the slow ones.   

TABLE X.  OFFICE TIME TOTALS BY SPEED CONDITION 

Slow: 2607 frames (50.5%) Fast: 2553 frames (49.5%) 

 

Similar to our findings about how candy proximity at the 
office led to a faster response rate, we also find that a robot 
approaching an office in the fast speed condition leaves the 
office sooner (in 22 vs. 29 seconds), indicating that people 
may respond more quickly to the high-speed robot at the 
office (Table XI). Though not yet substantiated statistically, 
the idea that the robot’s higher speed results in higher and/or 
faster human response rates to robot requests is fascinating, 
as it would indicate that human accordance to a robot's verbal 
communications could be influenced by that robot's motion 
patterns, including the sounds that those motions produce. 

TABLE XI.  MEAN TIME AT OFFICES  WITH DETECTIONS BY SPEED 

Slow  29.0 (23.6 std) 

Fast  22.2 (27.5 std) 

                    *Time in seconds 

 

Impact of Robot Speed in Transit  

During the robot transit task, people take candy more 
often and for longer mean durations while the robot is 
moving slowly (Table VIII & IX). We also note that, 
statistically, neither orientation nor basket location had a 
statistical relationship with transit detections.  

The speed condition findings do indeed show a trend 
toward predicting how many times people will take candy 
during the robot’s transit. Because of multiple detections 
along the paths our 55 transit detection instances reduced to 
N=19 paths with detections (out of 302 attempted paths to an 
office). In combining detections, we probably lost too much 
information to establish correlations between speed condition 
and whether there would be transit detections (Pearson test 
showed little support for relationship between speed 
condition to Boolean transit detections with p-value 0.7225). 
Because the ANOVA analysis retains information about the 
number of detections on each path, it had better results. Using 
speed condition to predict the number of transit detections 
results in a p-value of 0.077, a clear trend toward statistical 



  

significance. Given the small sample size, it is surprising and 
promising that we were able to detect this result.  

In this case, the detection instances for each speed 
condition have widely varying opportunity cost. The slow 
robot spent twice as much time in transit as the fast one 
(Table XII). Even accounting for this, however, we see a 
strong influence of speed on people’s frequency of taking 
candy; people took candy 2.19 times as often from a slow-
moving robot as a fast-moving robot.  

TABLE XII.  TRANSIT TIME TOTALS BY SPEED CONDITION  

Slow: 4632 frames (67.5%) Fast: 2227 frames (32.5%) 

 

Given the large numerical disparity between transit candy-
taking and the statistical trend showing that speed can predict 
mean values of candy-detections, there is clearly value in 
further exploring the relationship between speed and people’s 
attributions about robot interruptibility and approachability 
during transit. To be safe, we recommend the following 
transit speeds for future robot behavioral designs: use slower 
speeds if you want people to feel welcome to interrupt the 
robot, and faster speeds if it is more important for the robot to 
complete its current task. These settings could be 
dynamically altered depending on how over or under-
scheduled your robot happens to be over the course of a day. 

VII. DISCUSSION 
As our reverse trick-or-treating program was only 

designed to offer candy at office doors, it was striking that 
over one third of the candy-taking detections occurred 
during transit. Possible explanations for this apparent 
discrepancy include:  

• non-verbal offer: the costuming and presence of a 
basket of candy implicitly communicated an offer for 
people to take candy to which people responded,  

• prior knowledge: people knew that the CoBots' task 
that day was to share candy, as it has been reverse 
trick-or-treating for several years, and responded 
appropriately  

• stealing: baskets of candy are very tempting and thus 
people take candy without considering/caring 
whether the robot would want them to take the 
candy.  

Of the 55 candy-taking detections that occurred while the 
robot was in transit, 49 consisted of people blocking the 
robots’ path in order to take candy, with only 6 instances of 
people taking candy from a robot's basket while it remained 
in motion. Because of how people were interrupting the 
robot, we believe that non-verbal offer and prior knowledge 
were most powerful. 

Our orientation results demonstrated that robots do not 
need to behave like people if they are enabling activities that 
people are intrinsically motivated to complete. While basket 
location alone had no impact on how long the robot spent at 
each office, if the basket location matched the robot-facing 
angle, people could collect candy more efficiently. Thus, we 

believe that the dominant influence on how long people 
detained the robot at their offices was congruence between 
robot orientation and basket location.  

It was also noteworthy that so many people interpreted the 
robots’ asocial orientation condition as a miscalculation or 
bug in their verbal descriptions to the study conductors, 
rather than being intentional. This assumption is consistent 
with previous findings in which a cheating robot’s verbal 
misreporting of the correct winner [15] or who had won a 
rock-paper-scissor match [16] were interpreted as 
computation errors. Perhaps if we had made our asocial 
positioning more extreme, e.g., continuing to orient such that 
the robot was facing away from the person, or if the 
repositioning made it harder for them to get to the candy, we 
would see more people interpreting the robot’s behavior as 
intentional. They might even think it was teasing them. 

Numerically, people took candy more often at the offices 
after a higher speed approach. The fast speed may have made 
the robot seem adamant about its task (we frequently 
anthropomorphize machines [17]). Another explanation was 
that it was easier to hear a robot approaching in the high-
speed condition. In fact, the robots’ fast condition may be 
more salient to people within the offices for both reasons; 
sound is an important component of motion. In contrast, in 
addition to being less intimidating and easier to catch, the 
slow robots may have also seemed to place less importance 
on their current task.  

Thus, if researchers want a robot to seem more 
interruptible to people, perhaps they should include 
nonverbal cues, such as moving at a slower speed toward its 
current target, that make it seem more approachable. 

VIII. CONCLUSION 
Interactive robots are increasingly providing services and 

value to people in real world settings. In this work, we 
deployed two autonomous robots to deliver candy to four 
floors of offices, located in two separate buildings. These 
robots navigated, localized and completed their reverse 
trick-or-treating tasks autonomously, varying speed and 
orientation-to-office conditions for each office on their list in 
random fashion.  

We were surprised to discover that natural robot facing at 
the office had no impact on overall candy-taking behavior 
and that one-third of all candy-detection instances occurred in 
the hallway. We believe that the costuming and previous 
deliveries communicated an implicit non-verbal offer of 
candy to bystanders in the hallway. The high volume of 
people taking candy during transit and the ubiquitous 
blocking of the robot’s path supports this deduction.  

Our most important statistical findings were that a 
robot’s social positioning is less important than candy 
accessibility, and that people prefer to interrupt a robot 
moving slowly, rather than one moving quickly. We believe 
that people’s desire to take candy overwhelms any concern 
they might have about a robot’s correct social facing, and 
that slow robots seem more interruptible than fast robots. In 
addition, people take candy more often and quickly from the 
fast robot at the offices. Thus, higher speed approaches may 
be more salient to people for a robot making a direct request. 



  

In future work, it would be useful to compare these 
results to a study in which the robot were to ask people to 
complete a less desirable task, such as filling out a survey. In 
such cases, we might find a stronger effect from natural 
social positioning (why bother responding to a robot facing 
the wrong direction), and lower interruption frequency during 
transit, even with clear brochures and heavy advertisement. 
We would also be curious to see how these results would 
generalize to other task applications. 

In summary, this work provides several key insights: 

• Robots do not need to behave like people if they are 
enabling activities that people are intrinsically 
motivated to complete. 

• People can interpret non-verbal indications that a robot 
is offering candy without an explicit verbal offer.  

• People are more likely to interrupt a robot in a low 
speed condition, thus, robot transit speeds could be used 
to influence operational and interaction goals. 

• Human accordance to a robot's request may be 
influenced by that robot's motion patterns.  
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