
  

  

Abstract— There is a saying that 95% of communication is 
body language, but few robot systems today make effective use 
of that ubiquitous channel. Motion is an essential area of social 
communication that will enable robots and people to 
collaborate naturally, develop rapport, and seamlessly share 
environments. The proposed work presents a principled set of 
motion features based on the Laban Effort system, a 
widespread and extensively tested acting ontology for the 
dynamics of “how” we enact motion. The features allow us to 
analyze and, in future work, generate expressive motion using 
position (x, y) and orientation (theta). We formulate 
representative features for each Effort and parameterize them 
on expressive motion sample trajectories collected from experts 
in robotics and theater. We then produce classifiers for 
different "manners" of moving and assess the quality of results 
by comparing them to the humans labeling the same set of 
paths on Amazon Mechanical Turk. Results indicate that the 
machine analysis (41.7% match between intended and 
classified manner) achieves similar accuracy overall compared 
to a human benchmark (41.2% match). We conclude that these 
motion features perform well for analyzing expression in low 
degree of freedom systems and could be used to help design 
more effectively expressive mobile robots. 

I. INTRODUCTION 

Robots are increasingly being designed to operate in 
human environments. A robot that communicates its internal 
state can better conduct tasks, achieve rapport, and 
collaborate with people in settings where its intentions would 
otherwise be unclear. People do this all the time and are 
highly proficient at reading nonverbal cues, from the moment 
someone enters the room for a job interview, to making a 
snap decision about a potential romantic partner, or whether a 
child needs comforting. 

Our goal is to make a robot’s state quickly and clearly 
legible to interaction partners and bystanders. Expressive 
motion, which we define as a robot’s ability to communicate 
mental state, social context and task state via body 
movements, can accomplish such legibility at a glance. Using 
expressive motion, a robot could convey that it is under a 
deadline by hurrying down a hallway, which might lead to 
fewer immediate requests for action or response, or jovially 
enter an office to preview having good news. Such 
movement-specific expressions may smooth completion of 
tasks involving interaction and result in a higher estimation 
of the robot’s (social) intelligence. 
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Actors typically spend years training to use their bodies to 
express emotions, relationships, and other aspects of their 
characters’ internal state.  Our objective is to operationalize 
one such widely used method, the Laban Effort System [17], 
so that it can be used to generate legible expressive motion. 
Previous work has found that readable state communications 
result from having Laban-trained actors overlay the Laban 
Efforts onto flying robot trajectories [28]. The specific 
contribution of this work is a set of parameterized motion 
features that quantify the Laban Effort Vectors for mobile 
robots, whose motion is limited to position (x, y) and angle 
(theta). In other words, we want be able to analyze the Laban 
Efforts expressed in a mobile robot’s motion without hiring a 
trained actor. By limiting the implementation to three degrees 
of freedom, we also hope to discover underlying principles 
connecting motion trajectories to communication of robot (or 
agent) state.  

The ultimate goal is to apply these features to CoBot (Fig. 
2), a mobile robot with omnidirectional base that 
autonomously completes tasks in Carnegie Mellon’s 
Computer Science building. We chose six manners as 
representative samples of categories useful to current CoBot 
task scenarios. 1) Emotion: the robot might be happy vs. sad 
at the success or failure of a task. 2) Internal State: The 
robot might be confident vs. shy if it had explored a space, 
met a particular person, or completed a task many times 
before. 3) Task State: The robot might express its 
availability to socialize by enacting rushed vs. lackadaisical 
motion pathways. 

After describing the related work, we detail our 
conceptual framework for specifying Laban Motion features 
(Section 3). Next, we collect expressive motion trajectories 
instructed to be performed in each of the six manners from 
experts in robotics and theater (Section 4). Using these 
sample trajectories, we evaluate the quality of our motion 
features by training classifiers on the human data and testing 
them with cross-validation (Section 5). To characterize the 
quality of the classification results, we give the same data to 
humans on Amazon Mechanical Turk and compare the 
human label consistency to the machine classification 
accuracy (Section 6). We find that our Laban features are 
slightly more effective than people at labeling expressive 
motion abstracted to x, y and theta. This implies that, for low 
degrees of freedom, these features can capture as much 
information as humans can. 

II. RELATED WORK 

There is a natural human tendency to anthropomorphize 
even the simplest of moving shapes and machines along 
various channels of social expression [4][12][13][22][23]. In 
fact, inappropriate attribution of mental state can be used to 
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reveal impairment in social understanding [1]. Previous 
researchers have also adapted theatrical methods to designing 
sociable robots [5][16][20]. Therefore, we believe that a 
properly programmed robot could fluently communicate state 
if we successfully quantify the relevant expressive behaviors. 

Previous work demonstrates that people will ascribe 
emotions and intention to robots exhibiting characteristic or 
sequentially recognizable motions. Wizard-of-Oz 
experiments with an ‘emotive’ stick [11] found its motion to 
impact social attributions of personhood or machine, 
emotional state or even social behaviors (saying hello), when 
performed in an interaction context.  Experiments with 
single-axis door [14] confirm these findings. After the door 
opened slightly then closed, one subject reported that it 
indicated that the door saw them, judged them and decided 
not to let them in. The readability of these motion 
communications has also been demonstrated on a high degree 
of freedom PR2 robot [30], where researchers worked with a 
Pixar animator to expose its reactions to success or failure, 
and on the HERB robot during handoffs to communicate 
when it is trying to reach for or pass an object [29]. 

Finally, we know that varying particular motion 
characteristics on a simple robot, e.g., the Roomba, impacts 
human attributions toward that machine [17]. The (DE)SIRE 
model specifically explores speed, intensity, repetition and 
emotion for a humanoid form [19]. As described in the 
introduction, one successful set of motion features, which 
overlap with the studies mentioned above, has been Laban 
Movement Analysis. We expand upon these works by 
mapping their motion features to contextualized robot 
motions.  

The idea that there might be universal features of 
expressive motion originates in human and animal 
recognition of biological motion. We can read motion 
expressions within and across species, where relevant for 
survival [10], or by simulating similar motions in ourselves 
[9]. In addition to the usefulness of this recognition, 
hormones in our bloodstream directly influence certain 
physical embodiments of state - freezing or running away in 
the face of a threat, lethargic motion when depressed [2]. 
Therefore, there is a biological basis for the expression of 
certain agent states. 

Researchers have advanced our understanding of why we 
attribute mental state to simple representations, but do not 
provide a holistic framework for generating lifelike or 
expressive motions. Studies identify the importance of goal-
directed motion for theory of mind attributions in animations 
of simple geometric shapes [1][6][15]. For instance, as long 
as robots move with or toward a readable goal, we will make 
attributions about their mental state, task, or social 
relationships. While these findings validate the plausibility of 
generating expressive motion, we turn to acting methodology 
to identify principles of motion for quantification and 
composition. 

III. BACKGROUND & GENERAL APPROACH 

With the goal of analyzing and eventually generating 
expressive motion for mobile robots, we propose to translate 
the Effort Vectors from Laban Movement Analysis into 
calculable motion features. In this section, we overview 

Laban’s Effort vectors, Time (sudden/sustained), Weight 
(strong/light), Space (direct/indirect) and Flow (bound/free), 
followed by an exploration of the eight combinations of 
Time, Weight and Space, also known as the Action Efforts. 
Next, we outline the previous technical implementations of 
Laban Movement Analysis and why our approach is needed. 
Finally, we outline our features computations, which can be 
calculated from position (x, y) and orientation (theta) alone.  

A.  Laban Effort Vectors 
The Laban Effort Vectors are part of Laban Movement 

Analysis (LMA), a system for describing and recording 
human motion, developed to preserve dance choreography, 
much like a musical score preserves sound. Previous work 
has found value in applying various Laban Movement 
Analysis systems to humanoids [18][21][24][25][27]. LMA 
primarily details notation for Body, Space, Shape and Effort 
(our focus). While Body and Shape reference the motion of 
body parts, implying a humanoid form, and Space indicates 
where the motion is located in your kinesphere (i.e. sphere of 
possible motion, such as high, medium or low), a mobile 
robot is constrained to the floor, so we analyze Effort alone. 
Flying robots have used Laban Efforts to express readable 
robot state using actor-created trajectories [28]. Our efforts 
complement their findings, enabling computational features. 

TABLE I.  THE LABAN EFFORT SYSTEM 

Effort Vector Fighting Polarity Inducing Polarity 

Time: attitude 
toward time 

Sudden (abrupt) Sustained (gradual) 

Weight: force or 
apparent inertia  

Strong (powerful) Light (delicate) 

Space: attitude 
toward target 

Direct (single-focus) Indirect (multi-focus) 

Flow: sense of 
restriction 

Bound (constrained) Free (unconstrained) 

 

The Effort system, which Laban sometimes referred to as 
“dynamics,” attempts to relate interior intention to subtle 
motion characteristics such as strength and timing. Laban 
instructors describe these efforts as the “how” of a motion. 
There are many ways to walk toward a water fountain, but 
the combination of the efforts displayed during that path (e.g. 
acceleration, focus), can indicates something different about 
the agent’s inner state (e.g. confidence, thirst). The Efforts 
are broken into four categories, Time, Weight, Space, and 
Flow (Table I), which all scale between a “fighting” and 
“inducing” polarity, titles indicative of the connection 
between these motion characteristics and internal state.  

The polarity of each vector indicates the agent’s attitude 
toward that category. For example, an agent’s relaxed 
(sustained) attitude toward Timing might have gradual 
velocity transitions. For our application, manifestations of 
these efforts need to be adapted to a non-humanoid robot. For 
example, instead of using crossed arms vs. an open stance for 
a constrained Flow, we might limit or exaggerate the range of 
motion of the robot’s orientation. Weight might simulate the 



  

movement pattern of a heavy robot versus one that is delicate 
and light.  

One can picture the Effort vectors as a 4-dimensional 
space (Fig. 1). While Flow helps connect series of motions 
with narrative context, e.g. feelings of freedom or constraint, 
the first three efforts (Time, Weight, Space) are also known 
as the Action Efforts. Their eight combinations (Fig. 1, right) 

 

Figure 1.   (left) Fully-labeled graph of Laban Effort Vector notation, 
(right) Sample of how the notation would be used to describe the eight 
action combinations of Time, Weight and Space, e.g. “dab” is sustained-
direct-light and “flick” is sustained-indirect-light (adapted from [17]) 

map to classes of gesture (e.g. pull is an inverted press). An 
actor can draw from these gestures to show emotions 
physically, even if they have played a part many times before 
or are having trouble accessing those emotions. Thus they are 
widely used in acting training.  

B.  Quantifying Laban Effort Features 
We calculate motion features based on the Laban Effort 

System using the limited degrees of freedom of a mobile 
robot, namely, X, Y and Theta. The fourth variable is time. 
We describe our proposed features below. 

Timing: To measure how path motions scale from 
Sudden to Sustained, jerk (the derivative of acceleration) and 
the variance of the velocity provide measures of abruptness, 
but for a first-pass implementation, we also include speed (in 
x, y and the direction of motion). 

Weight: To quantify the perception of force, Strong to 
Light, we track the acceleration patterns. Heavy objects or 
high-resistance environments present higher frictions, which 
would reflect themselves in ramping accelerations rather than 
steps.  

Space: To rate the agent’s focus on its target, from Direct 
to Indirect, we measure the relative angle of its orientation 
toward the targets, the relative angle between its motion 
vector and orientation. We intend to eventually include the 
curvilinear and rectilinear attributes of its path as well. 

Flow: To quantify the agent’s projection of constraint, 
from Bound to Free, we measure side-to-side motion in y, 
side-to-side motion in theta (does it just look straight ahead 
or all around) and orientation variance. It may also be 
appropriate to include temporal flow features for other kinds 
of robot motions, like repetition or frequency. 

One could use these Laban Effort characteristics to 
inform various robot motion behaviors. The analysis 

presented here evaluates these features in classifying 
‘emotive traversal’ data from experts in robotics or theater. 
Effective analysis is a necessary precursor to generation, 
helping validate whether such features can communicate 
robot state. The ability to classify motions may also help 
identify what robots communicate unintentionally (e.g., a 
robot tour guide whose acceleration patterns make it seem 
confrontational). 

IV. EXPRESSIVE MOTION SAMPLE TRAJECTORIES 

We collect expressive motion sample trajectories from 
experts in robotics and theater using a motion-tracking table. 
We include both expert groups, since the former group has 
experience with robot motion and the latter with expressive 
motion, so we want to tap into the insight of both groups.  
Participants are instructed to move a mockup of the CoBot 
robot (Fig 2) from A to B and back to A in one of six 
manners (Fig 3). The mockup has an indicated front (an 
abstracted screen) and an amoeba tracking fiducial on its 
base. Fig. 3 (left) shows a graphic depicting the instructed 
exercise. In the actual experiment, the motion-tracking table 
had a black foam-core border overlaid on the surface, 
defining the elliptical region shown.  

We use reacTIVision [7] software to do the tracking at 15 
frames/sec, calibrated to the dimensions of the space. Data 
stores as (id, x, y, theta, time), in which the id is constant, x 
represents forward-back position between A and B, y 
represents side-to-side position, theta is orientation (zero is 
facing B), and time is the frame-number.  

  

Figure 2.   The motion-tracking table during a pre-study, Two views of 
study Mockup and a photo of the CoBot robot, future recipient of this 
expressive motion work 

    

Figure 3.   (left) Graphic depicting data collection, Participant stands while 
conductor watching screen, task is to move mockup from A-B-A (right) 
screenshot of rendered trajectory video given to MTurk participants 

One goal of this work is to demonstrate whether our 
features will be generalizable to expressive motions. Utilizing 
oppositional pairings heightens the likelihood of high 
contrast data that shows the potential of algorithmic motions 
to be as identifiable as handcrafted animations. We evaluate 
three oppositional pairs, happy vs. sad (emotion), confident 



  

vs. shy (internal state), and rushed vs. lackadaisical (task 
state), as all are relevant to CoBot task scenarios. 

We base our analysis on 16 participants (8 female and 8 
male) with high self-reported expertise in either Robotics or 
Theater. The average participant age was 28 (std. dev. 7.4 
years), and the average years in their specialty was 7.7 (std. 
dev. 5.1 years). Participants demonstrated each manner twice. 
We use only the second trial as they had had more time to 
refine their solution.  

The study procedure began with a film depicting CoBot. 
Next, the study conductor presented the mockup and motion 
tracking table (Fig 2), which had markings indicating 
positions A and B (Fig 3). The study conductor then 
instructed the participant to move the mockup from A-to-B-
to-A in a particular manner. Subjects enacted the six manners 
in randomized order within oppositional pairings: happy/sad, 
confident/shy, rushed/ lackadaisical. The ordering follows 
from our pilot in which participants found affective states 
easier to conceptualize. They ran through each set of six 
manners twice.  

 

Figure 4.   Expressive Motion Trajectories. Each manner rectangle 
includes two columns of A-B-A path renderings from a bird’s eye view.  

Participants described the resulting trajectories (Fig. 4) as 
having explicit motion characteristics. They also engaged in a 
great deal of storytelling and human references to come up 
with their expressive motion solutions. Inspection of the 
participant trajectories reveals certain commonalities in the 
solutions. Confident and Rushed are mostly straight line 
paths. Happy frequently undulates. Lackadaisical meanders 
widely.  

Note that the display format of Fig. 4 reveals or obscures 
different motion characteristics. Widely spaced dots result 
from rapid motion (contrast Rushed to Sad), and deviating 
paths and curves are easily noticeable. Orientation, 
overlapping paths (e.g. hesitating or backing up), and small 

motions, such as the turn characteristics at point B, are better 
found in the data file.  

V. PATH CLASSIFICATION WITH LABAN FEATURES 

We use the collected expressive motion trajectories to 
evaluate our Laban features, using cross validation to test the 
classification results on the oppositional pairings (75% 
accuracy) and across all manners (41.7%). We have emotive 
traversal samples of each of the 16 participants for each of 
the six manners, thus we analyze 96 data files. To correct for 
our sampling frequency (15frames/sec), we smooth our data 
at half the sampling frequency. We also truncate the start and 
end of the data files to active motion sequences.  

Next, we calculate our Laban Effort Features across all 
paths, made up of initial implementations of the four efforts. 
We quantify the agent’s attitude toward Time by velocity 
characteristics, such as means and variances. We quantify the 
apparent Weight via the path’s acceleration characteristics. 
We quantify the agents sense of goal (Space) by tracking the 
percent of time it spends oriented toward point B (starting 
orientation), point A (ending orientation), versus towards a 
side. Finally, we quantify Flow, the apparent boundaries 
imposed on the motion, or lack thereof, via measure of side-
to-side motion off the path and range of orientation. 

TABLE II.  SIGNIFICANT LABAN EFFORT FEATURES IN 
DISTINGUISHING OPPOSITIONAL PAIRS, VIA ANOVA ANALYSIS (N=96)  

 
An ANOVA analysis (Table II) of the motion features 

finds 16 of the 18 features to be useful in distinguishing one 
or more of the oppositional pairs (e.g. rushed/lackadaisical). 
As might be expected, happy/sad and rushed/lackadaisical 
find clear distinctions in all of the Timing and most of the 
Strength features. Using Weight, we can now interpret the 
lower acceleration characteristics of sadness as a lack of force 
or energy that contrasts to the relatively energetic motions in 
happiness. Confident/shy is best distinguished by Flow 
characteristics, likely because most confident paths adhere 
closely to the boundaries of the path, while shy incorporates 
more curvature. We may need to improve our Space features, 
as only one of the three relative orientation features showed 
significance for the high-contrast oppositional pair data. It is 
also possible that orientation will become more important and 
telling during the presence of an interaction. 

We calculate machine classification results for each 
oppositional pairing, then across all data. The diametric 
qualities of the former pairing makes it more likely that we 
will be able to answer the Boolean query; is it possible for 
expressive motion in X, Y and Theta to communicate state? 

Pairing TIMING
ave-y-vel ave-x-vel ave-speed var-y-vel var-x-vel var-speed

happy/sad 0.0020* <.0001* <.0001* 0.0094* 0.0021* <.0001*
confident/shy 0.7793 .0096* .0098* 0.3776 0.0653 0.1223
rushed/lackad 0.0067* <.0001* <.0001* 0.0359* <.0001* <.0001*

STRENGTH
ave-y-acc ave-x-acc ave-ddt var-y-acc var-x-acc var-ddt

happy/sad 0.0007* <.0001* <.0001* 0.0140* 0.0036* 0.0006*
confident/shy 0.3856 0.1465 0.1433 0.277 0.4438 0.7701
rushed/lackad 0.0655 <.0001* <.0001* 0.0804 0.0004* 0.0045*

SPACE FLOW
%-b-orient %-a-orient  side-orient y-dist theta-dist var-y-pos

happy/sad 0.0781 0.3757 0.4171 0.0521 0.2093 0.7795
confident/shy 0.4569 0.2523 0.1177 0.1336 0.2547 0.0427*
rushed/lackad 0.1128 0.9645 0.0250* 0.0004* 0.0101* 0.0025*

*statistically significant predictor of manner based on Anova analysis



  

The latter gives a measure of the potential impact of these 
features in more complex state space (e.g, perhaps happy but 
definitely lackadaisical), such as we hope to use with mobile 
robots in future work.  

The average oppositional pair classification accuracy is 
75% on the test sets and 100% on the training data. The 
average classification accuracy for happy/sad was 75%, while 
confident/shy was 78.5% and rushed/lackadaisical was 
71.9%. There are 32 path samples for each oppositional pair 
(1/3 of the total data), which we divided into eight subsets for 
cross-validation. Each time, we perform a discriminant 
analysis using all but one subset, then test the solution on the 
reserved paths.  

The overall classification accuracy across all six manners, 
again with 8-fold cross-validation (over all 96 samples), is 
41.7%, performing best for happy (62.5%), sad (56.3%) and 
lackadaisical (50%), and worst for rushed (18.8%), as in 
Table V. While rushed might seem like an intuitive manner, 
similar paths were present in almost all manners, as the 
confusion matrix shows. The slow speed characteristics of 
sad likely aided classification, while happy paths had 
consistent features in acceleration. Confident and Shy fell in 
the middle (both 31.3%). To further improve the within-
manner results, we could refine our training set to use only 
the paths found to be most readable to people. 

VI. CONTRASTING HUMAN AND MACHINE LABELS 

Ultimately, human capacity to read social expression will 
be the benchmark by which we judge machine capabilities. 
Thus, to understand the quality of the classification results, 
we contrast machine classification results to people’s ability 
to label the same set of trajectory samples.  

First, we render the expressive motion videos (Fig. 3, 
right) directly from the collected data files, representing the 
mockup as a circle with a line to indicate orientation and 
tracing the boundaries of the motion area. The relative sizes 
of grey circle to mockup and motion area to motion-tracking 
table are proportional to the original setup.  

Next, we use "master workers" on Amazon Mechanical 
Turk (MTurk) for two classes of video categorization. MTurk 
is a useful resource for crowdsourcing such tasks [31]. 
Master workers have high reliability ratings gained from 
accurately completing previous MTurk tasks over an 
extended training period. We present workers with two kinds 
of categorization tasks: in the first, they must label a video as 
one of two manners (an oppositional pairing like 
rushed/lackadaisical); in the second, participants label each 
video as one of the six manners. 

To mirror our oppositional pair classification results, we 
present participants videos by oppositional pairing (e.g. 
happy/sad), asking them to assign each video one of two 
labels. There are 44 samples in each oppositional pair subset, 
including all 32 path samples of the oppositional pairing 
being tested (16 of each label) and eight randomly selected 
videos from the other two subsets. The number of workers 
doing the labeling varies with the supply and demand of 
MTurk at the time, but we had 4-5 workers per oppositional 
pairing (see breakdown in Table III), where two distinct 
master workers label each path. As an indication of the 

reliability of the worker labels, we provide data on their 
agreement in Table III, ranging from 73% to 82%. 

TABLE III.  MTURK OPPOSITIONAL PAIR LABEL RELIABILITY* 

happy/sad (5 workers) confident/shy (5) lackad./rushed (4) 

agreed on 73% (32/44) 
disagreed 27% (12/44) 

agreed 82% (36/44) 
disagreed 18% (8/44) 

agreed on 77% (34/44) 
disagreed 23% (10/44) 

*two distinct worker labels for each trajectory 

Overall readability within oppositional pairs was ~80% 
across the three pairings, only slightly higher than machine 
classification of the same (section V). For each oppositional 
pair, we analyze labels of all paths intended to be in the 
manners of that pairing, i.e., 64 samples for each pairing, 
made up of 32 samples of each manner. The overall 
readability of Happy vs. Sad was 79.7%, while Confident vs. 
Shy was 78.1% and Rushed vs. Lackadaisical was 81.3%.  

The oppositional pairs are intentionally high-contrast, and 
their strong readability scores confirm the differences 
classification also found, confirming the possibility of using 
motion features to distinguish between states via expressive 
motion. A more challenging test for our motion features 
comes when trying to recognize to which of six categories a 
trajectory belongs, thus we continue with another MTurk 
categorization set in which workers label each video as one 
of six categories (happy, sad, rushed, lackadaisical, confident, 
shy). 

There were 96 paths, each labeled by four distinct master 
workers with 18 workers overall. Because of the way the 
categorization application is set up on MTurk, that meant 
running the experiment two times, with two distinct worker 
labels per video in each set (see Table IV). As an indication 
of the reliability of the category label, workers agreed on 
about one third of the labels for each set. Chance would have 
each label occur 12.5% of the time, which indicates that the 
expressive motion paths do provide information about the 
category, but that they are not all equally good at 
communicating state. 

TABLE IV.  MTURK ALL- MANNER LABEL RELIABILITY 

first set - 9 workers second set - 9 workers 

agreed on 36% (35/96) 
disagreed 64% (61/96) 

agreed on 31% (30/96) 
disagreed 69% (66/96) 

 

The categories over which the worker labels most 
frequently disagreed (Confident and Rushed 21/192, Happy 
and Lackadaisical 16/192, Sad and Shy 15/192), may indicate 
correlations between manners. Of the 32 intended samples of 
Confident and 32 intended samples of Rushed, 21 were 
labeled both "Confident" and "Rushed." Regardless of the 
initial quality of the expressive paths, this suggests overlaps 
between the motion characteristics we associate with them, 
for example, both confident and rushed may present as 
“pushing” across the space, as the Press in Fig. 1. 

     Readability across all manners is 41.2%. We calculate this 
from the frequency with which the worker label matches the 



  

 
TABLE V.  MACHINE CLASSIFICATION CONFUSION MATRIX* . ROWS ARE  INTENDED PATH CATEGORIES AND COLUMNS ARE PREDICITIONS  (N=96) 

*41.7% accuracy overall 

TABLE VI.  MTURK CONFUSION MATRIX*. ROWS ARE INTENDED PATH CATEGORIES AND COLUMNS ARE HUMAN LABELS (N=386) 

*41.2% readability overall 

intended expressive manner, given each of 96 videos is 
labeled four times (384 samples). This readability score is 
significantly higher than chance, which would be 12.5%. The 
full data is in Table VI.  

  Examining the manner readabilities one by one, we find 
that some are more difficult to successfully represent than 
others, ranging from 25% to 59% accuracy. Shy appears to be 
the most challenging to represent (only 25% readable), while 
Rushed and Sad may have been the easiest (59.4 and 56.3% 
readable). Confident, Happy and Lackadaisical were in the 
middle (35.9, 35.9 and 34.4% readable), with just over one-
third labeled with their intended category. It is also 
interesting to contrast what the machine classification versus 
MTurk workers found clearer or more difficult. Although the 
overall classification and readability scores were similar, the 
within-manner differences mean that there is still more for 
the machine to learn. 

The thespian (40.1% readable) and roboticist paths 
(42.2% readable) also had similar overall readability scores 
but, again, each group had different readability scores within 
manners. The thespians created significantly more readable 
Lackadaisical, Sad and Shy paths while the roboticists 
created significantly more readable Confident and Rushed. 
This may be because the former trajectories benefit from 
more nuanced exploration, while the second set were more 

readable as straightforward instantiations. Both groups were 
similarly successful at expressing Happy. 

If we compare the overall readability scores to the 
machine classification results based on Laban Features, we 
find that the human labels are just about as accurate as the 
calculated label. This indicates that the Laban features did 
well in helping distinguish expressive motion paths 
computationally. 

VII. CONCLUSIONS 
As collaborative robots move into everyday life, the need 

for algorithms enabling their acceptance becomes critical. By 
adhering to the types of expressive motions that people 
already use and innately understand, we expect to produce 
robots that are more legible, and hence more acceptable, to 
the general, untrained populace. As a first step in that 
direction, we conclude that Laban Effort Features prove 
useful in distinguishing expressive motions computationally, 
supporting their potential for use in systems for analyzing 
and generating expressive motions with X, Y and Theta.  

Using these results, we can also track the effort feature 
characteristics of current mobile robot systems, gaining tools 
for evaluating the unintentional communications they already 
project to humans in their environment. For example, CoBot 
frequently requests help in pressing the elevator button, as it 
has no arms, but is often ignored. If it has been requesting 



  

assistance without orienting toward someone (indirect), while 
moving at a smoothly accelerating (light) and measured pace 
(sustained), people may subconsciously feel less special, and 
infer the task to be low-priority, therefore being less likely to 
help. By making sure the robot orients toward people (direct) 
in a more forceful way (strong) while maintaining sustained 
Timing so as not to seem aggressive, people may be more 
inclined to help or respond to its query.  

In limiting our implementation to three degrees of 
freedom, we have already begun to discover principles 
connecting motion trajectories to certain communications of 
robot (or agent) state. For example, we have found that the 
clearest communications of shy involve direct paths with 
hesitations and that timing characteristics are one of the most 
significant features separating the different manner paths.  

We will continue to evaluate and extend our algorithms 
on the CoBot robot, a system deployed daily on autonomous 
tasks at Carnegie Mellon. By exploring motion analysis and, 
eventually, expressive motion generation on a real-world 
system, we will be able to assess the effect and effectiveness 
of incorporating the expressive motions discussed in this 
paper to robot tasks, both in terms of task performance and 
human attributions.  

To do so, we would like to extend our current feature set 
to contextualized expressive behaviors. We believe this will 
be particularly relevant to generating robot motions in 
dynamic human environments. If Laban features are our 
letters, we can use a higher-level framework to help design 
situated robot motion behaviors. One possibility is Anne 
Bogart and Tina Landau’s nine Viewpoints [3]. The system 
specifies contextualized social and environmental behaviors, 
like the temporal reactions we have to seeing someone 
unexpectedly, or the influence of room dimensions on the 
overall shape of our path.  

By handing off this set of parameterized Laban Effort 
System motion features to the research community, we can 
continue to collectively explore and extend our understanding 
of this space. These features could be used on any mobile 
robot without the need for special hardware, and could 
therefore be immediately and widely evaluated. For example, 
autonomous car researchers might find value in the projection 
of friendliness or hurry at a four-way intersection. Moreover, 
if expressive motion is already communicatory in just 
position (x, y) and angle (theta), imagine its potential in 
systems with higher degrees of freedom and multi-modal 
communication. 

ACKNOWLEDGMENT 
Special thanks to the National Science Foundation for 

funding this research. 

REFERENCES 
[1] F. Abella, F. Happéb and U. Fritha. Do triangles play tricks? 

Attribution of mental states to animated shapes in normal and 
abnormal development. Cognitive Development, Vol. 15:1, pp. 1–16, 
January–March 2000 

[2] J. Becker, S. Breedlove and D Crews. Behavioral Endocinology. MIT 
Press, Cambridge, 2003 

[3] A. Bogart and T. Landau. The Viewpoints Book: A practical guide to 
Viewpoints and Composition. Theater Communications Group, 2005 

[4] C. Breazeal. Designing Sociable Robots. MIT Press, 2004 
[5] A. Bruce, et al. Robot Improv: Using drama to create believable 

agents. In Proceedings of the International Conference of the 
Association for the Advancement of Artificial Intelligence, 2000. 

[6] F. Castelli, et al. Movement and Mind: A Functional Imaging Study of 
Perception and Interpretation of Complex Intentional Movement 
Patterns. NeuroImage, Vol 12: 314-325, 2000 

[7] J. Chen, W. Lin, K. Tsai and S. Dai. Analysis and Evaluation of 
Human Movement based on Laban Movement Analysis. Tamkang 
Journal of Science and Engineering, Vol. 14, No. 3, pp. 255-264, 2011 

[8] A. Engel, et al. How moving objects become animated: The human 
mirror neuron system assimilates non-biological movement patterns. 
Social Neuroscience, 3:3-4, 2008 

[9] V. Gazzola, et al. The anthropomorphic brain: the mirror neuron 
system responds to human and robotic actions. Neuroimage 35.4 
1674-1684, 2007 

[10] M. Hauser, N. Chomsky and W. Fitch. The Faculty of Language: 
What Is It, Who Has It, and How Did It Evolve? Science: 298 (5598), 
1569-1579, November 22, 2002 

[11] J. Harris and E. Sharlin, Exploring emotive actuation and its role in 
human-robot interaction. In Proceedings International Conference on 
Human-Robot Interaction, 2010 

[12] F. Heider and M. Simmel. An Experimental Study of Apparent 
Behavior. The American Journal of Psychology, Vol. 57(2), 1944 

[13] F. Heider. Social perception and phenomenal causality. Psychological 
Review, Vol 51(6): 358-374, 1944 

[14] W. Ju and L. Takayama. Approachability: How people interpret 
automatic door movement as gesture. Int’l Journal of Design, 2009 

[15] H. Kelley. The processes of causal attribution. American Psychologist, 
Vol 28(2): 107-128, Feb, 1973 

[16] H. Knight. Eight lessons learned about non-verbal interactions through 
robot theater. In Proceedings International Conference on Social 
Robotics, Amsterdam Netherlands, November 2011 

[17] R. Laban.  Modern Educational Dance. Macdonald & Evans, 1963 
[18] A. LaViers and M. Egerstedt.  Style Based Robotic Motion. In 

Proceedings of the American Control Conference, 2012  
[19] A. Lim. Design and Implementation of Emotions for Humanoid 

Robots based on the Modality-independent DESIRE Model. Master’s 
Thesis at Kyoto University, 2012 

[20] D.  Lu and W. Smart. Human Robot Interaction as Theatre. In IEEE 
International Symposium on Robot and Human Communication, 2011 

[21] M. Masuda, S. Kato and H. Itoh. Laban-Based Motion Rendering for 
Emotional Expression of Human Form Robots. Chapter in Knowledge 
Management and Acquisition for Smart Systems and Services Lecture 
Notes in Computer Science, Volume 6232: 49-60, 2010. 

[22]  B. Mutlu and J. Forlizzi. Robots in organizations: the role of 
workflow, social, and environmental factors in human-robot 
interaction. Proceedings Int’l Conf on Human-Robot Interaction, 2008 

[23] Picard, R. Affective computing. MIT Press, Cambridge, MA, 1997 
[24] J. Rett and J. Dias. Human-robot interface with anticipatory 

characteristics based on Laban Movement Analysis and Bayesian 
models. In IEEE 10th Int’l Conf on Rehabilitation Robotics, 2007 

[25] J. Rett, L. Santos, and J. Dias. Laban movement analysis for multi-
ocular systems. In Proceedings IEEE/RSJ International Conference on 
Intelligent Robots and Systems, 2008. 

[26] M. Saerbeck and C. Bartneck. Perception of affect elicited by robot 
motion. In Proc. Int’l Conference on Human-Robot Interaction, 2010 

[27] L. Santos and J. Dias. Human-Robot Interaction: Invariant 3-D 
Features for Laban Movement Analysis Shape Component. In 
Proceedings of Int’l Conference on Robotics and Applications, 2009 

[28] M. Sharma, et al. Communicating affect via flight path: exploring use 
of the laban effort system for designing affective locomotion paths. In 
Proceedings Int’l Conference on Human-Robot Interaction, 2013 

[29] K. Strabala, M. Lee, A. Dragan, J. Forlizzi, S. Srinivasa, M. Cakmak, 
and V. Micelli Towards Seamless Human-Robot Handovers. Journal 
of Human-Robot Interaction, 2013 

[30] L. Takayama, D. Dooley and W. Ju. Expressing thought: Improving 
robot readability with animation principles. ACM/IEEE Proceedings 
International Conference on Human-Robot Interaction, 2011 

[31] A. Kittur, E. H. Chi, and B. Suh. "Crowdsourcing user studies with 
Mechanical Turk." Proceedings of the SIGCHI conference on human 
factors in computing systems. ACM, 2008. 
 

 


