
  

  

Abstract—This paper describes the hardware and algorithms 

for a realtime social touch gesture recognition system.  Early 

experiments involve a Sensate Bear test-rig with full body touch 

sensing, sensor visualization and gesture recognition 

capabilities. Algorithms are based on real humans interacting 

with a plush bear. In developing a preliminary gesture library 

with thirteen Symbolic Gestures and eight Touch Subtypes, we 

have taken the first steps toward a Robotic Touch API, showing 

that the Huggable robot behavior system will be able to stream 

currently active sensors to detect regional social gestures and 

local sub-gestures in realtime. The system demonstrates the 

infrastructure to detect three types of touching: social touch, 

local touch, and sensor-level touch. 

I. INTRODUCTION 

he physical nature of robots necessarily dictates that 

detecting different levels of touch is an important area of 

research. We define sensor-level touch as the robot’s 

knowledge of the activation and location of each individual 

sensor. This helps the robot be aware of its physical 

boundaries. Sensor-level touch enables functional tasks such 

as robot grippers to operate safely by allowing the robot to 

sense when and where it had made contact with something.   

As robots become social actors with the ability to 

physically engage human bodies, we must develop a social 

touch taxonomy to describe the new realms of interaction. 

Social touch is defined as touch that contains social value. 

Prior work has demonstrated the detection of local touch 

sub-gestures with increased tactile resolution and gesture 

profiles, for detection of affective content. Local touch 

allows discrimination of a tickle from a poke. In this work, 

we attach a social value to touch at different body locations 

to determine symbolic touch, which posits that there is a 

locational significance to touch, in particular that of an 

anthropomorphic robot’s body.   

Our hypothesis is that a body-awareness of touch, 

combined with the gesture profile of the touch, can allow a 

robot to detect the difference between a socially laden 

gesture (like a hug) and a local gesture (like a poke).  This 

work unites the sensor level touch with the profiling of 

affective touch, to create a system that can infer social 

meaning from the contact between a human and a teddy-bear 

 
Manuscript received March 1, 2009. This work is funded in part by a 

Microsoft iCampus Grant, the MIT Media Lab Things that Think and 

Digital Life Consortia.  We also thank Don Steinbrecher for his support.  

All authors are from the Personal Robots Group at the MIT Media Lab, 

20 Ames St. Cambridge, MA 02142 {rehtaeh, rtoscano, anjchang, wdstiehl, 

yiw, cynthiab}@media.mit.edu 

 

 

body. 

This paper describes our development of a system of real-

time touch classification for full body touch sensors.  We 

track gestures across the geometry of a teddy bear using an 

initial touch gesture library gleaned from behavioral studies 

with adults. In ongoing work, the sensor system and 

architecture presented in this paper are being incorporated 

into the Huggable robotic teddy bear [1], [2].  

II. BACKGROUND 

A. The Huggable 

The immediate application for this research is to equip the 

Huggable personal robot platform with sensate touch, so that 

it can better perform its role in healthcare, social 

communication [3], education and entertainment 

applications. In prior work with the Huggable, we classified 

a diverse set of affective touch interactions for a paw 

segment with pressure, temperature and capacitive sensors 

using off-line techniques [1]. In order to further develop the 

tactile taxonomy, we distilled the system into a stand-alone 

touch processing sensor system by creating a separate 

hardware test system, called the Sensate Bear, which has a 

lower-density of electric field sensors spread throughout a 

teddy bear body [4].  

 
The creation of a separating testing platform allowed us to 

make our somatic processing system full-body and real time 

while the current 3
rd

 generation Huggable robot was still 

being developed and built.  The goal of this work is to apply 
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Fig. 1.  Target System for Huggable: The Social Touch Processing 

developed on the Sensate Bear will be used in conjunction with 

multimodal sensors to feed information and take commands from 

the Huggable Behavior system.  A visualization of sensor and 
gesture activity is also available  



  

the lessons learned using the Sensate Bear test system back 

to the 3
rd

 generation Huggable robot for real time affective 

and social touch processing.  Figure 1 shows a diagram of 

where the social touch processing system outlined in this 

paper will be placed in the larger Huggable robot context. 

B. Relation to prior work 

Touch plays a key role in human interaction [5], [6]. Prior 

work demonstrates that a robot should respond to affective 

displays, such as petting in pet therapy [7], [8] or in playing 

with children [9], [10]. We note that much of the prior work 

falls into detecting sensor-level touch, rather than detecting 

the symbolic value of touch [11].  A penguin robot with full-

body capacitive sensing was used to detect the on-off 

presence of a human along with other multimodal sensors in 

[12].  

Pressure-based robotic skin systems include [11] and [13]. 

We apply a similar algorithmic strategies to capacitive 

sensing, which senses both human contact and close 

proximity touch.  However, we also incorporate body-

awareness into the Symbolic Gesture recognition pathway.  

Touch researchers have demonstrated that the social value of 

touch varies depending on the body location and various 

other factors (duration, relationship of people) [14]. 

Our work looks to populate the social touch taxonomy by 

observing social gestures demonstrated by humans, and 

implementing pattern recognition.  The closest algorithmic 

match is [15], which uses both region and manner of touch 

to automatically group common clusters of touch.  These 

techniques could be used to further populate our touch 

gesture library, but should incorporate interactivity to gain 

more representative results for our target social situations. 

III. SYSTEM OVERVIEW 

Our algorithms mirror the structure and connotations of 

human touch, and we developed a simplified hardware to 

implement our system as compared with the previous 

Huggable experimentation.  The advantages of full-body 

social touch are differentiation of regionally significant 

gestures at the expense of heavier computational load.   

Real-time recognition requires tiered processing and rapid 

sensing. We selected capacitive sensors because they are 

fast, sense proximity in addition to contact and differentiate 

people from most objects. The Sensate Bear uses a 

capacitive sensor circuit design based upon [16], and is 

configured into a network of 56 modular sensors covering 

the entire bear. Figure 2 depicts the system components and 

flow.  

The sensors connect through Midplane boards   to a 

central Somatic processing board for calibration.  From 

there, signals pass via USB to the computer where gesture 

recognition takes place. The microcontroller can stream 

signal data with 10-bit resolution.  Even when treated as on-

off sensors, however, our studies showed high correlation 

for the tested subset of Symbolic Gestures. 

 

 

 
Once on the computer, the Sensate Bear software, created 

with Microsoft Robotic Developers Studio in C#, reads the 

associated COM port data and performs thresholding, 

gesture recognition, and processing then displays active 

sensors and gesture classifications on a locally hosted 

website visualization. 

During processing, we track social touch gestures, i.e. 

tactile communication or affective gestures between the 

human and bear.  These gestures play a key role in robot 

social touch, which contrasts traditional robot functional 

touch research, e.g. object manipulation.  In particular we 

identify Symbolic Gestures that have social significance 

across individuals and associated regional touch 

distributions (e.g. hug, footrub), and touch subgestures, 

which are smaller scale and are independent of location (e.g. 

pat, poke).  

IV. HARDWARE DESIGN 

A. Tiered Hardware Architecture 

Within the bear, all communication and calibration takes 

place on a centralized Somatic processing board.  It gathers 

data in a tree structure from eight Midplane board channels, 

each of which processes the signal from up to eight 

capacitive sensors, Figure 3.  We tune our sensing circuits to 

detect human touch to a height of approximately 1 inch.   

The micro-controller on the Somatic processing board 

streams data using serial over USB. It gathers information 

by iterating through the eight Midplanes. A more detailed 

description of the electronics design can be found in [16].  

 
 

Fig. 2.  System Overview:  Subcomponents include sensors and 

electronics on the Sensate Bear, followed by on-computer 
processing and classification  



  

 

B. Physical Structure 

The Sensate Bear has a rigid foam body, constructed to 

house the sensors under the fur of a commercial teddy bear. 

Its 56 sensors are installed on the surface of a foam 

superstructure with body segments and shapes that mirror 

the physical structure of the Huggable, as shown in Figure 4. 

The electronics for processing are inside the head and torso. 

 

C. Capacitive Sensing for Social Touch 

Capacitive sensors are well suited to social gestures as 

they are fast, inexpensive and can use conductivity to 

differentiate human from object-based touch.  Additionally, 

if the sensing area is sufficiently large, physical contact is 

not required.  On the other hand, if a person is wearing many 

layers, their body signal will be attenuated.  To capture these 

edge cases, calibration is necessary. 

To detect the presence of a person near the Sensate Bear 

sensing electrodes, we selected the Motorola/Freescale 

Semiconductor 33794 integrated circuit, which converts a 

touch’s net effect on the electric field to an output voltage at 

a rate of five milliseconds per channel.  This chip is located 

on the Midplane board, and we wire up to eight of its 

sensing channels.  Thus, all sensors on the bear can be read 

in 40 milliseconds.  The change in signal level increases 

with proximity, contact area and person/object conductivity. 

Direct touch results in the maximum change, saturating 

detection.  

The sensor itself is a shielded electrode, essentially two 

metal plates, separated by a nonconductor.  Because of this 

simple construction, capacitive sensors can be soft or hard 

and will ultimately be used to sense non-direct touch through 

the fur of the Huggable. 

D. Optimizing Sensor Density  

The identification of salient locations was based on a 

behavioral study where subjects role-played social 

interactions with a teddybear on videotape.  The initial 

Huggable sensate skin design called for 1200 sensors of 

three different types, however, this bear simplifies the 

hardware design. 

The previous Huggable paw had 2”x1” boards, each 

equipped with eight QTC pressure sensors, four temperature 

sensors and one electrode, which was tied to the electrodes 

of three other boards for region sensing.  Thus, the total area 

that each capacitive sensing was about ~2”x4”. Each of these 

sensors was tuned to detect proximity of the human hand 

from ~ 1 inch above the surface of the electrode.  Because 

proximity is detected instead of force, they could detect very 

light touch, such as brushing the top surface of the fur. 

In the Sensate Bear design there are two capacitive sensor 

sizes, 1.5”x2” and 3”x2”, and layout is designed for social 

touch. The sensor boards have electrode plates on both sides, 

signal and shield, and a connector.  The shield faces inward, 

directing sensitivity to the outward, amplifying the signal 

and decreasing sensor cross-triggering and electronics 

interference.  

V. ALGORITHMS AND SOFTWARE 

A. Detection Modes for Social Touch  

We define three classes of touch for social touch 

recognition; sensor level touch includes localization and 

activation levels, Touch Subtypes involve detection of base 

forms of local touch (e.g. poke, pat) and Symbolic Gestures, 

which represent common body-wide social gestures with 

typical regional distributions (e.g. hug, handshake).  These 

processing paths are depicted in Figure 5.  

In sensor level touch, we read in the sensors, then process 

and scale their signals in calibration to use the full ground to 

supply voltage range.  Next we convert the analog to a 10-bit 

digital signal and send it over USB to software, which uses a 

XML lookup table to map incoming sensor ID’s to sensor 

locations.  

Our detection of Touch Subtypes and Symbolic Gesture 

analyzed sensor activation patterns using a pre-defined touch 

gesture library, developed based on human studies and target 

behaviors of the bear.   We present early examples of what 

these libraries should include. 

The software creates an object for each sensor that 

consists of a Sensor name, a Buffer of sensor values 

reflecting the last twenty cycles, an Activation state Boolean 

that indicates whether the signal is over 30% on, and a 

Location.  Buffer size and activation thresholds are 

configurable. 

 

 
 

Fig. 3.  Bear Electronics: Sensor board attached to foam ‘foot’ 

connects to an 8-channel Midplane, which itself plugs into one of 
the eight Midplane connectors on the Somatic board. 

 
 

Fig. 4.  The passive test-rig Sensate Bear has a foam superstructure that 

fits under a Teddy Bear’s fur. Capacitive sensors span the surface of the 
foam and signal/communication electronics are mounted inside.   



  

 
The local touch subtype pathway uses the buffer of signal 

values for a single sensor to calculate features, then 

iteratively checks for a matching subtype in the gesture 

library.  Only one subtype can be active on each single 

sensor board and the detection speed for new gestures is 

inversely proportional to the size of the buffer.  

The Symbolic Gesture Pathway utilizes the location 

information of multiple sensors, passing those patterns 

through locational filters at each timestep, using a simple 

priority logic to constrain which features can be active at the 

same time, and updating the classification in real time. 

B. Touch Gesture Library 

Observed gestures during adult behavioral study with nine 

subjects (mixed gender) and user study with eleven children 

(age 4-11) appear in Table I.  Study details and procedure 

are published in [4], [17].  As in Figure 5, the processing 

path for Symbolic Gestures is:  

Locational Filters !  Priority Logic !  Classification 

While the Touch Subtypes path is:  

Fill Data Buffer !  Extract Features !  Classification 

Noted gestures were used to verify the techniques that 

follow for local and body-wide gesture recognition.  This list 

is a starting point meant to motivate further exploration into 

touch gestures, and should be updated for different robotic 

form factors and applications.  Tickle appears in both 

categories because people tend to associate particular 

regions with being ticklish, but there also exists a distinct 

tickle subgesture that can use to refine final classifications. 

 

C. Sensor Level Touch 

Sensor level touch occurs mainly within the Sensate Bear 

electronics, which scale and condition the analog sensor 

signals before digital conversion. Data is passed into 

software as a list of sensor IDs and 10-bit amplitude levels.  

Each sensor ID is mapped in software to its respective on-

bear location, so this format is sufficient to identify or 

interpolate touch locations.    

Although the sensor IDs coming from the microcontroller 

mirror the Somatic to Midplane to sensor wiring, our 

software uses an XML document that delineates body 

regions and remaps data into human-readable labels, e.g. 

‘head2’. 

Direct access to sensor locations enables social behaviors, 

such as ‘Look At’ in which the bear’s gaze might track a 

touch location, as posited in [2].  

D. Touch Subtype Processing 

In this implementation, the recognition of local gestures, 

or Touch Subtypes, predicts the likelihood of predefined 

Touch Subtypes for a single sensor based on several seconds 

of data history. Sensor signals have 10-bit resolution. The 

challenge of classifying time dependent gestures is making 

them real time, thus trading-off ‘perfect characterization’ for 

reasonable but realtime accuracy.  

Similar classifiers have been used for the paw segment [1] 

and in pressure-based skins [11].  Features in the first (paw 

segment) include: direction of motion, average sensor value, 

change in sensor value, number of sensors active; and in the 

second (pressure sensors): absolute values, spatial 

distributions and temporal difference.   

Both use the absolute and derivative of signal amplitude.  

As Symbolic Gestures capture locational information, 

number and special distribution of sensors is less relevant.  

Direction of motion may be added in the future to the 

Sensate Bear’s processing, but we decided to first hone 

subgesture tracking on individual sensors.  

TABLE I 

INITIAL GESTURE LIBRARY FOR ROBOTIC TEDDY BEARS 

Symbolic Gesture Touch Subtype 

Tickle Pet* 

Footrub* Poke* 

Handshake Tickle* 

Head-pat* Pat 

Shoulder-tap Hold* 

Belly-tickle Tap 

Side-tickle* Shake 

Foot-tickle Rub 

Go-to-sleep  

Wakeup  

Feeding  

Rocking  

Dance   

 *Gesture implemented 

. 

 

 
 

 

Fig. 5.  Processing Pathways: The Sensor Level outputs calibrated, 

localized signals, which are then processed into local Touch Subtypes  

(time dependent) and body-wide Symbolic Gestures (not time 

dependent).  

 



  

 In keeping with our observation-based design, we 

selected and added to these heuristics based on a single 

subject’s demonstration of tickle, poke, and pet. Figure 6 

shows the raw oscilloscope traces of these Touch Subtypes 

 
By inspection, one can see that signal amplitudes vary 

with the different subtypes.  The change in signal value is 

important, but one notes that the signal derivatives at a point 

overlap much more than the signal frequency spectrum over 

a few seconds.  In taking the Fourier transform of those 

signals, there is variation in the dominant base frequency, 

e.g. the tickle signal has a much shorter average period than 

pet.  Further, the distribution of frequencies (noise level) is 

much wider in tickle than pet.   Thus, for each subtype, we 

evaluated feature values for peak amplitude, base frequency, 

frequency spectrum and duration (see Results).  

As part of the touch subtype processing, a variable in the 

sensor class stores the last several cycles of values for its 

activation level as an array.  We calculate feature values 

from that history. The peak amplitude is the maximum value 

in the set, base frequency can be calculated from lowest 

frequency value in the Fourier Transform, noise level 

reflects frequency spread, and duration is incremented for 

each cycle. Pseudocode for this process follows: 

 

E. Symbolic Gesture Processing 

Symbolic Gestures recognized predominantly from 

location, so recognition can happen in realtime. Touch 

location on a body is highly tied to social intention, as found 

in [15], particularly given the anthropomorphic profile of the 

robot. Thus, our algorithms use a locational filter for each 

Symbolic Gesture (see Figure 7) gleaned from human 

pattern recognition of the adult behavioral study.  

 
At each cycle, the software tests for any matching 

activation patterns, displaying active gestures on screen. The 

processing is probabilistic, a minimum number of sensors in 

within the locational filter must be active for at least two 

seconds, an increment informally chosen to parallel human 

recognition time. 

Next, the algorithm enters its priority logic.  It is possible 

to have multiple gestures, but we must capture the cases 

were classifications conflict.  For example, the tickle 

distribution involves many of the same sensors as hug.  

However, hug involves various other unique sensors.  Thus, 

if hug is active, tickle is unlikely to be happening, so hug 

supersedes Tickle.  Priority logic must be based on human 

behavior and recalculated when adding new gestures.  

Labeled interactions for the initial implementation are 

headpat, hug, tickle, and footrub. These classifications were 

approximations of user behavior from the behavioral study 

and represented the most used expressive gestures therein.  

The logic for each is as follows: 

Tickle: (not Hug) && (active >= two of four sensors)  

Headpat: (active >=one of the three sensors)  

Hug: (both sides)&& (active >= four of ten sensors)  

Footrub: (active => one of two sensors) 

If needed, the robot can also evaluate the subtypes present 

within any active distribution.   

At a higher level, the robot behavior system will 

eventually associate affective and communication content 

with Touch Subtypes (poke always gets attention) and 

Symbolic Gestures (hug has a positive reassuring effect). 

VI. RESULTS 

A. Timing Results 

Figure 8 depicts the timing delays during data flow from 

sensors over serial then in the software classification paths.  

The total per program cycle time is about 42 milliseconds 

including communications delay – thus locational filters can 

be processed ~20 times a second and subtypes are assessed 

about every second.  Based on the observed gesture lengths 

in the study (see Table II), that is likely to be similar to 

human recognition time. 

 
 

Fig. 7.  Locational filter examples for Symbolic Touch:  The 
programmed side-tickle and head pat filters are visualized here.  

Fig. 6. Typical Touch Subtypes: Raw oscilloscope captures of subject 

demonstrating tickle, poke and pet on a single 3x2” sensor board. 

Testing physical touch, not proximity, duration is ~5 seconds.  



  

 

B. Touch Subtype Results 

Our experiments informed the touch subtype classification 

features, whose averaged values for four subtypes is 

depicted in Figure 8. We used observed data to craft an 

algorithm and verify it piecewise.   

 
Because the capacitive sensing mux requires time to 

acquire signal after switching channels, all sensors are 

queried in turn with a 5-millisecond delay between each one.   

Thus the true data rate is (58 sensors) x (.005 seconds) = 

0.29 sec or 3.4 Hz, which will eliminate some of the higher 

frequency information, by the Nyquist rate, to a maximum of 

about 7 Hz.  This has the risk, in particular cases of high 

frequency tickle of being misclassified as constant touch.  

Classification of subtypes has been done in prior work [1], 

so this is a just for training of the test rig. What is novel is 

that we implement this for the first time exclusively with 

capacitive sensing. We believe that from the data presented 

in Table II that with a larger data set and more users, it may 

be possible that larger sensors and lower overall sensor 

density can be sufficient for detection of these touch sub-

types.  

C. Locational Filter Results 

We selected a few Symbolic Gestures to verify that our 

probabilistic locational filters would correctly reflect a user’s 

touch.  We instructed subjects to demonstrate these gestures, 

in the context of a social interaction, for example, requesting 

a head pat because the bear was “doing a good job.”  The 

results are shown in Table III. 

 
 Although our code did not test to distinguish between 

different subtypes, we observed, in confirmation with [15], 

that particular regions of the bear tended to have associated 

social content, regardless of subgesture.  Thus, 

anthropomorphic profiling may already provide a higher 

than chance likelihood that particular social gestures are 

present.  

VII. CONCLUSIONS 

This paper is about developing a real time system for 

social and affective touch. Key contributions are, first, that 

our algorithms are based on real humans interacting with a 

plush bear.  Secondly, research with the Sensate Bear test rig 

that will ultimately be incorporated into the Huggable 

personal robot system.  Thirdly, we utilize the full-body 

sensing and anthropomorphic nature of the bear to motivate 

regional symbolic touch research. 

We present our approach for realtime classification, 

currently in development, and some early results. 

Table II demonstrates how the data looks for affective touch 

sub-types.  We also posit that much of social touch is 

regionally dependant. Table III describes a study to 

demonstrate the regional nature of the touch. 

Our next step is to focus on the classification of the robot.  

We have outlined an approach to real time social and 

 
 

Fig. 8.  Timing Flowchart for Processing:  Each program cycle has 

a sensor latency, communication delay, and runtime which limits 
to minimum time before categorization complete.   

TABLE III 

FIRST TEST OF REGIONAL FILTERS  

 

  

Activated on 

first try 

Activated with 

explanation 

Regional 

Accuracy 

Headpat 100% 100% 100% 

Tickle 20% 60% 20% 

Hug 40% 80% 80% 

Footrub 100% 100% 100% 

Subjects instructed to demonstrate labeled gestures. High activation rate 

is due to the lack of crossover between locations of touch and the 

highlighted gestures.  
 

 

 

TABLE II 

TRIAL SUBGESTURE FEATURE RESULTS 

AVERAGE Tickle Poke Pet Hold 

No 

Touch 

Peak Amplitude 60% >30% 100% 100% 0% 

Base Frequency 5-10Hz 0-1Hz 0.5-2Hz 0 Hz 0 Hz 

Freq Spectrum 

high 

noise blip 

low 

noise 

no 

noise 

no 

noise 

Duration 

3-20 

sec 1 sec >4 sec >4 sec n/a 

      

VARIANCE Tickle Poke Pet Hold 

No 

Touch 

Peak Amplitude 0.3 0.8 0.1 0.1 0 

Base Frequency 0.5 0.1 0.3 0.1 0 

Freq Spectrum 0 0.3 0.2 0 0 

Duration 0.8 0.2 0.7 0.8 n/a 

      

STD DEV Tickle Poke Pet Hold 

No 

Touch 

Base Frequency 3 0.5 1 n/a n/a 

Duration 5 0.2 7 11 n/a 

 

     Based on ten iterations with a single user. 



  

affective touch, so the next step is to do a more in depth 

study with a large set of training data and evaluate our 

algorithms against that.  

The preliminary timing results indicate that our system 

will be able to successfully execute real-time touch 

classification for a full-body sensate robot, demonstrating a 

tiered approach to touch recognition.  

Our taxonomy of touch includes Symbolic Gestures that 

have associated locational distributions, and Touch Subtypes 

that are locationally-independent.   Each of those can be 

accessed in software in addition to sensor-level data.   

Thus, we have also created the software base for a 

Robotic Touch API, showing that the Huggable behavior 

system will be able to query currently active sensors and 

values, gestures and subgestures.  
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