
  

  

Abstract— Functional robots are an increasing presence in 
shared human-machine environments. Humans efficiently 
parse motion expressions, gaining an immediate impression of 
an agent’s current action and state. Past work has shown that 
motion can effectively reveal a robot’s current task objective to 
bystanders and collaborators. This work investigates whether 
robots can communicate other aspects of their internal states 
via motion, e.g., strict adherence to deadline, flexibility of 
attention, or confidence in a task. Rather than showing us what 
the robot is doing, these motion characteristics leverage the 
how of the task motions to convey additional robot attitudes. To 
lay the foundations for this objective, we adapt the Laban 
Efforts, a system from dance and acting training in use for over 
50 years. We operationalize features representing the Laban 
Efforts (Time, Space, Weight, and Flow) to the movements of a 
2-DOF Nao head and a 4-DOF Keepon robot during simple 
dance and look-for-someone behaviors. Using online survey, we 
collect 1028 motion ratings for 72 robot motion videos, 
achieving significant legibility results for all four Effort 
implementations. Simple robots may not have human degrees 
of freedom, but it appears their motion patterns can effectively 
convey complex expressions. 

I. INTRODUCTION 

Readable robot motion is essential for human-robot 
collaboration. A user that can anticipate robot motions will be 
able to efficiently collaborate [1][2] or move out of the way. 
Expressive robot motion goes a step further, helping convey 
the inner attitudes of its agent. A robot might appear to 
complete a task with increasing confidence after many 
iterations, or with boredom if programmed to seek out 
novelty. Because of people’s acuity at reading non-verbal 
cues, motion is an efficient channel for encoding expression 
and can help cue response. Our past work found that varying 
robot speed impacts whether people will interrupt the robot 
[3]. Much like a waiter averts his eyes when busy, robots in 
human-machine environments can use motion to moderate 
and/or prime interactions with people.  

Various robotics researchers have singled out the Laban 
Efforts as a singularly applicable design framework for robot 
expressive motion [4][5][6][7]. Many previous adaptations 
have used a robotic arm or humanoid frame, whereas our 
work evaluates the Laban Efforts for lower degree of 
freedom robot head-motions. According to Laban [8], the 
four Efforts; Time, Space, Weight, and Flow; specify the full 
space of possible expression for a particular motion goal 
(e.g.,  head-yaw moving from 0 to  45 degrees).  Thus we use  
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Figure 1.  Illustration of the Degrees-of-Freedom evaluated in our Laban 

Head-Motions for the Keepon robot (left) and Nao robot (right).  

the four polar Laban Efforts  as our state space for expressive 
motion evaluation. To enhance the validity of our results, we 
evaluate the motions of two robots (see Fig. 1) performing 
two tasks (see Table I).  

Each Effort has two poles (see Table II), for example, the 
Flow Effort can be either bound or free and the Time Effort 
can be either sudden or sustained. We hypothesized that 
people would be able to distinguish between motion samples 
with single opposing Effort pole values (e.g., one sample path 
with bound Flow and another with free Flow). We provided 
participants with descriptions of each Effort pole adapted 
from Laban literature (see Table II), and asked them to 
correctly label two videos depicting opposing poles of a 
particular Effort, with all other Efforts held constant. This is 
non-trivial because there are four Laban Efforts whose 
features are non-independent (e.g., desired distance might 
bound the possible speed range) and users were unfamiliar 
with robot motions [9].  

Our online study results substantiate our hypothesis that 
robot head-motions can convey Laban-defined expressive 
states, as all four Effort legibility tests show statistically 
significant results. This is an improvement upon our previous 
features and pilot [10], in which people had only been able to 
label the Time and Space Efforts correctly, and we had not 
yet implemented Flow. Remarkably, we also found that our 
Effort legibility results were not impacted by robot task or 
form in the majority of cases. These overall findings suggest 
that simple variations of robot task motions can allow robots 
to convey a variety of inner states.  

TABLE I.  ROBOT-TASK PERMUTATIONS 

 Dance Look For Someone 

Nao nao-dance nao-look 

Keepon keepon-dance keepon-look 
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II. BACKGROUND & RELATED WORK 

The Laban Effort System is part of Laban Movement 
Analysis (LMA), a system for describing, discussing and 
documenting human motion, developed in the 1960’s to 
record dance choreography, much like a musical score 
preserves sound [8]. Laban Motion Analysis has since been 
used to annotate or explore human movements in dance, 
drama, nonverbal research, psychology, anthropology, 
ergonomics, physical therapy, and many other movement-
related fields [11]. For example, to gain background in this 
method, the first author attended a semester-long course in 
this method targeted at first-year acting majors. The Effort 
System, which Laban sometimes referred to as “dynamics,” 
attempts to relate interior intention to subtle motion 
characteristics such as flow and timing. 

The Efforts read as if someone had programming in mind 
(Table II), conveniently specifying a library of combinable 
motion factors that give insight into an agent’s motion. These 
factors may suggest attributes of the agent’s inner state (e.g. 
confidence, urgency or interest). Laban instructors describe 
these Efforts as the how of a motion. The four Effort factors 
include utilization of Time: sudden/sustained, Space: 
direct/indirect, Weight: heavy/ light, and Flow: bound/free.  

TABLE II.  THE LABAN EFFORTS 

 Fighting Pole Inducing Pole 

Time 
Sudden:  

rushed, hurried, “now, 
now now!!!” 

Sustained:  
lingering, relaxed, waiting 
for the perfect time to act. 

Space 
Direct:  

linear, pinpointed, 
laser-like. 

Indirect: 
expansive, flexible, 

meandering. 

Weight 
Heavy:  

compressed by gravity, 
collapsed, overcome. 

Light: 
delicate, buoyant, lifted 

up, floating. 

Flow 
Bound:  

contained, controlled, 
rigid, clear. 

Free: 
abandoned, released, 

outpouring, out of control. 
 

Each Effort runs between two contrasting Effort Poles. 
Building on Charles Darwin’s classification of animal 
motions into dominant or submissive [10], Laban categorizes 
direct, sudden, heavy and, bound as displaying a “fighting 
disposition,” and indirect, sustained, delicate, and free as 
displaying an “inducing disposition” [8]. The polarity of each 
vector indicates the agent’s attitude toward that category. For 
example, an agent’s relaxed (sustained) attitude toward Time 
might have gradual velocity transitions, consistent with what 
one would imagine a deferential animal displaying toward 
one that is more dominant.  

For our application, manifestations of the Laban Efforts 
need to be adapted to robots. We present a representative 
sample of computational features (spanning motion 
classification and generation) that previous researchers have 
used to represent the four Laban Efforts in Table III. Though 
we build on previous work in our Effort implementations (see 
section III), we also make sure to use features that apply to 
non-anthropomorphic forms. For example, while the inner 
angle calculations of [4][13] and [14] require a head with 
torso and arms, overall direction of motion (as in [6][10][15]) 
is relevant to simple robot forms.  

One difficulty in compiling the related work interpreting 
and generating expressive motion with Laban Effort features 
is that computational implementations of Laban Efforts are 
diverse and occasionally contradictory. As one sees in the 
presented Table III, jerk (the derivative of acceleration) has 
been alternately used to represent Time, Weight or Flow. 
Similarly, velocity and/or acceleration features have been 
used to represent both Time and Weight Efforts. 
Furthermore, few researchers have implemented Flow. 

TABLE III.  LABAN EFFORT IMPLEMENTATIONS BY CITATION 
(*INDICATES LABAN EXPERT VERIFICATION, †OUR PREVIOUS WORK) 

 Time Space Weight Flow 

[4]† velocity orientation acceleration range 

[5] rate-
commands inner-angles kinetic 

energy n/a 

[6]* n/a n/a acceleration n/a 

[13] joint-velocity inner-angles torque n/a 

[14] veloc,acc,jerk inner-angles n/a n/a 

[15] slope-of-
acceleration 

direction-of-
velocity acceleration n/a 

[16] velocity area acceleration n/a 

[17] duration horizontal-
range velocity n/a 

[18] slope-of-
velocity n/a n/a n/a 

[19]* slope-of-
velocity n/a jerk n/a 

[20]* acceleration off-axis 
motion 

kinetic 
energy jerk 

 

The range of features used to represent each Effort 
signifies that good classification results alone do not mean 
that the Laban Effort features were implemented correctly. 
For example, if a Time feature was used to represent Weight, 
the system might store the correct information for 
classification but any interpretation based on Laban motion 
factors would be wrong.  

This disparity is why we provide our study participants 
with detailed descriptions of the Laban Efforts poles (based 
on the Table II descriptions [8]), and why we devote this 
paper to Effort Legibility alone. An alternate approach to 
verify one’s Laban Effort implementation is to use Certified 
Motion Analysts (Laban experts) to label the motions 
[6][19][20]. Testing one’s implementation across a range of 
robots and behaviors (as we do in this paper) would further 
strengthen the generalizability of previous findings using this 
technique. Laban experts will seldom be the ones interacting 
with our robots, so it was important for us that untrained 
users were able to recognize changing Effort values.  

III. OUR LABAN EFFORT IMPLEMENTATION 

While many previous researchers have used ideas from 
the Laban Effort System or piecemeal features from a 
particular Laban Effort, our work is one of the first to 
actively overlay Laban features onto robot tasks. To say this 
in implementable terms, given a sequence of robot position 
goals, we use the Effort Settings to set the path and timing 
characteristics between them such that they might convey a 
particular (inspired by the animation work of [11]).  One of 



  

the most important considerations here is the non-
independence of the Laban Effort features (e.g., desired 
distance might bound the possible speed range).  

The non-independence of the Laban Efforts means we 
need to strategically sequence the application of the Effort 
features. The two authors worked separately to implement 
Laban features on the individual robots and arrived at the 
sample application order (Fig. 4), which is also supported by 
past work in animation [11]. The constraints on what the goal 
should be and other feature limits or attributes (e.g., motions 
should start on beat) come from the task itself. 

  
Figure 2.  Framework for Laban Effort Application Order 

The reason this framework has not been present in the 
robot literature previous to this paper is simply because 
people had seldom generated robot motions with all four 
Laban Efforts, thus they had not yet discovered this ordering. 
First, we apply motion constraints (mostly Flow), next we 
calculate path features (Space), and finally we calculate the 
temporal behaviors along that path (Time and Weight). This 
approach will become clearer as we review our Laban Effort 
feature implementations in the sections that follow.  

We represent each Laban Effort as a binary variable that 
has polar values (e.g. the Time Effort can be either sudden or 
sustained). One might imagine the Laban Efforts as a four 
value DIP-switch that researchers can toggle to explore the 
full state space of Laban expression. Thus, Effort Settings 
represent the four current Effort Pole values for Space, Time, 
Weight and Flow (Table II). Extremal values should allow 
for efficient evaluation of the range of possible motion 
characteristics and are what actors initially learn to explore 
the expressive motion possibilities within a scene. 

It is important to note that we use the Laban Efforts as the 
design inspiration for our expressive motion system, but that 
its features are, by nature, an approximation of the varied 
way that individual actors might choose to embody these 
concepts. The essential goal is to evaluate whether simple 
robot motions appear to communicate inner states during 
robot task execution, thus our adaptations of the Laban 
Efforts need only provide a sufficient variety of state 
expressions for such evaluation. 

A. Laban Time Effort 
The purpose of the Time Effort is to convey an agent’s 
attitude toward time. In the four robot-task permutations that 
follow, we have made use of the following feature vector: 

!"#$!!""#$% =
!"#$%&'(
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Although past works have frequently used velocity to 
represent the Time Effort (Table III), the idea of a robot 
reaching its goal before its deadline (arrival time) or having a 
knee-jerk initial response to a new stimulus or general sense  

 
Figure 3.  Illustration of Time Effort abruptness feature with sample values 

in seconds, where theta represents rotational motion, and v steady-state 
velocity. The dotted line presents a sudden response with a higher-velocity 

initial response and the dashed line represents sustained.  

of jumpiness (abruptness) captures additional subtleties of 
someone who is anxious about temporality. To quantify the 
latter, we cross-apply time values from the human startle 
response [21], setting the initial 0.2 seconds of a sudden 
motion traversal to a higher velocity that the rest of the path, 
as in Fig. 3.  

The benefit of maintaining a vector of possible features 
for each Effort is that one can pick and choose as best applies 
to the constraints of a particular robot, task or software 
implementation. For example, the Nao robot does not have 
the tilt or vertical compression capabilities of the Keepon 
(when limited to head motions), but it could certainly make 
use of the yaw and pitch range of motions for Flow, and the 
acceleration and head pitch features for Weight.  

B. Laban Space Effort 
The purpose of the Space Effort is to indicate an agent’s 
attitude toward its goal; it could have one clear goal, it could 
have several possible goals (as in a multi-person 
conversation) or it might be avoiding its goal or have no 
particular goal at all. 

!"#$%!!""#$% = ! !"#$"%&'!!"#$%$"&
!"#$%!!!"#$$%"&(!) 

 

For simplicity, we have chosen to implement the robot’s 
current goal as a distribution of one (Space=direct) or more 
(Space=indirect) Gaussians. The robot can sample this when 
selecting a new target orientation. We want to control 
people’s first impression of the robots’ Space setting, so we 
hardcode initial yaw orientation values.  

C. Laban Weight Effort 
The purpose of the Weight Effort is to reflect apparent force. 
Generally, Weight manifests relative to the agent as either a 
reflection of the outside forces acting on the agent (heavy vs. 
light) or the way in which an agent is actively using force  
(strong vs. delicate).  

!"#$ℎ!!!""#$% = !
!""#$#%!&'()
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We have chosen to use the former representation, as most 
human versions of the latter involve motions emanating from 
the core versus from one’s fingertips or toes that are difficult 
to implement on robots with few degrees-of-freedom. Higher 
accelerations can be an indication of heavy/strong Weight. 
Vertical compression and a downward tilt of the head (Fig. 4, 
left) are intended to reflect larger outside forces (heavy), 



  

whereas vertical extension and uplifted head tilt reflect light 
Weight. 

D. Laban Flow Effort 
Finally, the purpose of the Flow Effort is to scale all the 
previous Efforts in a way that conveys the overall constraint 
or continuity of the agent’s inner state. In the literature, 
interpretations of Flow range from exaggeration (in space) to 
temporal consistency; we chose to use range of motion. 
 

!"#$!!""#$% = !
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According to [11], bound motions express a quality that 
the motion could stop quickly if conditions change, whereas 
free motions display a continuity that would more smoothly 
transition. We scale the overall extent of motion by varying 
the robots’ rotational ranges of motion (Fig. 4, right).  

         
Figure 4.  Left image shows Weight Effort vertical compression feature on 
the Keepon robot (light left, heavy right), Right illustration presents Flow 
Effort ranges of motion for yaw (narrow range bound, wide range free). 

E. The Look-For-Someone Behavior 
The first task behavior we assess is a look-for-someone 

behavior. Note how we follow the Laban Effort Application 
Order in Table IV. To accomplish this behavior we sample 
target positions from a stochastic distribution. This results in 
a random walk scanning behavior that can move in consistent 
or inconsistent directions (as depicted in Fig. 5). The motion 
is centered at the robot’s current goal (which we set to be in 
the center).  

TABLE IV.  APPLYING EFFORTS TO LOOK-FOR-SOMEONE TASK  

Flow Set range of motion for all joints. Bound yaw has a small 
range (4σ = 15°), and Free has a large range (4σ = 45°). 

Space Choose starting point and next target position by sampling 
from range. Direct samples from single centered Gaussian 
(µ=0°), and Indirect samples from two offset Gaussians, in 
which the µ offsets are ±2σ (calculated from Flow). 

Time 1) If Time Effort is Sudden and the motion duration allows, 
have a rapid initial response, at twice the calculated speed, 
for the first 0.2 seconds (as in human startle response). 

2) Apply high velocity cap (1m/s) to Sudden to prevent 
unnaturally jerky motions. Apply lower velocity cap (0.2m/s) 
to Sustained to communicate a relaxed attitude.  

Weight 1) Set center point of head tilt to be tilted downward (-0.3 
radians) for Strong, and uplifted (0.2 radians) for Light. Body 
compression for Strong, Body extension for Light. 

2) Use high acceleration value for Strong (0.20m/s2), lower 
acceleration value for Light (0.05m/ s2) and the travel 
distance value from the Space Effort to calculate speed. 

 
Figure 5.  Screenshots from two sample motion sequences.                      

Top row: indirect Space, sudden Time, strong Weight and free Flow. 
Bottom row: direct Space, sudden Time, delicate Weight and bound Flow.  

Because of software limitations on the Keepon, we were 
unable to include the first abruptness feature described in 
Table IV’s Time Effort. Because of the lower degrees of 
freedom in the Nao head, its spatial Weight features include 
head pitch only, rather than vertical compression. 

F. The Dance Behavior 
The robots’ dance behavior had the following constraints: 

(1) the motions should follow the beat, (2) the motions 
should oscillate. We review the full procedure for applying 
each Effort in Table V. We enforce directionality so that the 
robots move back and forth and bop their heads.  

TABLE V.  APPLYING EFFORTS TO ROBOT DANCE TASK*  

Flow Set range of motion for all joints. Bound yaw has a small 
range (4σ = 15°), and Free has a large range (4σ = 45°). 

Space Choose next target position by sampling from Flow 
distributions. Direct samples from single centered Gaussian 
(µ=0°), and Indirect samples from two offset Gaussians, in 
which the offsets are ±2σ (calculated from Flow). Enforce 
directionality constraints, if needed, using absolute values. 

Time Calculate velocity based on distance from Space component 
and desired tempo (500msec). For Sudden, the robot arrives 
in 70% of the desired period and waits for beat. For 
Sustained, it uses the original metronome value (100%). 

Weight 1) Body position for Strong is squished (if possible) with the 
head tilted down. Light is less squished and looking up.  

2) Heavy has a trapezoidal velocity profile to steady state 
velocity (high acceleration), and Light has a triangular 
velocity profile (low acceleration). We integrate the velocity 
curve such that we obtain the desired arrival from Time. 

IV. LEGIBILITY EVALUATION PROCEDURE 

Next, we describe the legibility evaluations of our four 
Effort implementations across two robots and two tasks on 
Amazon Mechanical Turk (MTurk) [9]. Our goal is to 
establish whether untrained users can detect and 
appropriately label when a particular Effort value is flipped.  

To do this, we present MTurk users with two side-by-side 
videos of the same robot performing the same task in which 
all Efforts are held constant but one. In the rest of the paper, 
we refer to these sets of two videos as “comparison videos.” 
For example, in the Time Effort evaluation, the individual 
videos might both display direct Space, light Weight and 
bound Flow, but the one on the left has sudden Time, while 
the one on the right has sustained Time. We depict two 
screenshots from a Space Effort comparison video in Fig. 6. 
It is probably easy to guess which side was more indirect. 



  

  
Figure 6.  Two sequential screenshots from a Space Effort comparison 

video of the Nao Look-for-Someone behavior, with sudden-direct-heavy-
bound on the left and sudden-indirect-heavy-bound on the right (s1). 

We present all possible variations of comparison video 
orderings in Table VI. To illustrate, in the t1 videos, the left 
video has a sudden Time setting, while the right video has a 
sustained Time setting. In the t2 videos, we use the same set 
of videos with the order reversed, i.e., sustained left, sudden 
right. Because there are eight (three factorial) contrasting 
Effort settings in which one Effort is flipped, and four robot 
task setups, there are a total of thirty-six videos displaying 
one ordering (e.g., t1), and another thirty-six displaying the 
reverse ordering (e.g., t2). 

TABLE VI.  COMPARISON VIDEO TYPES (36 CREATED OF EACH TYPE,   
8 PER ROBOT-TASK PERMUTATION) 

 Left video Right video 

t1 sudden sustained 

t2 sustained sudden 

s1 direct indirect 

s2 indirect direct 

w1 heavy light 

w2 light heavy 

f1 bound free 

f2 free bound 

 

To collect data about whether the MTurk workers can 
recognize which video has a particular Effort setting, we 
asked MTurk expert workers to choose which video 
displayed more of the requested characteristic across all the 

comparison videos for that Effort (N=72). To do so, we used 
the survey template and keys outlined below: 

Watch video depicting the motion of two robots side-by-side. Select 
which robot's motion displayed more of the requested characteristic, or 
rate the two robots equally. 

A- Left more ___ 

B- Both equally ___ 

C- Right more ___ 

*Blank could be: sudden, direct, bound, heavy, sustained, indirect, free, light. 

Before completing the survey, we also provided the 
workers with a key describing what each rating choice 
signifies. For example, the full key to the bound survey says:  
A: Flow of robot on left noticeably more contained, controlled, rigid, clear. 
B: Flow of both robots is equally contained, controlled, rigid, clear. 
C: Flow of robot on right noticeably more contained, controlled, rigid, clear. 

These were the descriptions used for each Effort Pole 
survey (following format show above):  

 

TIME1. Sudden: Timing of robot on left is noticeably more rushed, 
hurried, “now, now now!!!” 

TIME2. Sustained: Timing of robot on left is noticeably more lingering, 
relaxed, waiting for the perfect time to act,  

SPACE1. Direct: Orientation of robot on right is noticeably more linear, 
pinpointed, single-focused, or  laser-like *relative to CAMERA* 

SPACE2. Indirect: Orientation of robot on right is noticeably 
more expansive, flexible, meandering, *relative to CAMERA* 

WEIGHT1. Heavy: Weight of robot on left is noticeably more compressed 
by gravity, collapsed, overcome. 

WEIGHT2. Light: Weight of robot on left is noticeably more delicate, 
buoyant, lifted up, floating. 

FLOW1. Bound: Flow of robot on left is noticeably more contained, 
controlled, rigid, clear. 

FLOW2. Free: Flow of robot on left is noticeably more abandoned, 
released, outpouring, open hearted, out of control. 

 

For each survey, we collected two ratings for each video 
from distinct MTurk expert workers to decrease the impact of 
user error. Specifically, for the bound survey, two distinct 
workers selected ratings for each Flow comparison video (36 
of type f1 and 36 of type f2). We also conducted a free 
survey over all Flow comparison videos. We repeated this 
process for all four Effort categories, running separate 
surveys to collect data about MTurk ratings for all eight 
Effort poles.  

To review, for each Effort, there are 72 comparison 
videos (36 in one order and 36 in the reverse), two label 
surveys and two ratings collected for each. That means there 
are 72 x 2 x 2 = 256 MTurk ratings collected per Effort and 
1024 ratings collected overall. To evaluate our results, we use 
ANOVA analyses (N=128 because of two MTurk ratings) to 
test whether comparison video ordering (e.g. sudden on left 
versus sudden on right) can predict MTurk ratings. We use a 
p-value of <=0.05 as our cutoff for statistical significance and 
a p-value of <=0.1 as a trend toward significance. 



  

 
Figure 7.  Online Study Legibility Results for Time (sudden/sustained), Space (direct/indirect), Weight (heavy/light) and Flow (bound/free) Efforts. The 

vertical axis presents  the two comparison video orderings (e.g. t1 had sudden on the left and sustained on the right, t2 the reverse), the horizontal axis shows 
mean and standard error of MTurk numerical ratings, and the key presents each label’s statistical significance in differentiating between video orderings.

V. LEGIBILITY RESULTS 

Our approach is to use single ANOVA analyses to 
evaluate whether video-order (e.g. f1 vs. f2) can predict the 
mean survey ratings for a particular label (e.g. bound). We 
find that our Laban Effort implementations have statistically 
significant legibility ratings for every Effort pole label tested 
(N=128). Further sub-analyses show that Effort legibility is 
largely independent of task and form.  

We compile the overall results for each Effort by their 
two labels in Fig. 7, including mean ratings with standard 
error bars, and p-values linking video ordering to MTurk 
ratings. Each inset graph in represents one of the four Efforts 
and includes data from both Effort pole surveys, divided by 
video ordering. Negative numbers indicate that more workers 
thought the left video displayed the requested characteristic, 
while positive numbers indicate more workers thought the 
right video did. Relating these graphs back to the survey 
described in section VI, we represent answer A (left video) as 
-1, answer B (equal) as 0, and answer C (right video) as 1.  

We note that mean ratings were always consistent with 
the true video category (i.e., on average, all videos with 
sudden on the left had a mean rating indicating more people 
thought sudden was on the left). While a mean value of -1 
would indicate that every single worker looking at that 
comparison video type rated the left video as displaying the 
requested characteristic, naturally, human variation was more 

diverse with absolute mean values ranging from 0.11 to 0.80 
for each comparison video type.  

The Flow Effort results were strongest (Fig. 7, bottom-
right). We see that the mean ratings of the f1 videos (bound 
left, free right), rate the left video as bound (mean = -0.62), 
and the right video as free (mean = 0.80). As one would 
expect, the ratings reverse in the right set of bar graphs for f2. 
Note that the p-values for both labels are very significant 
(well below p=0.05, our cutoff for statistical significance). 

We see similarly significant overall results for each 
remaining Effort category. In the top-left Time Effort results, 
the ordering of the sudden-sustained (t1) versus sustained-
sudden (t2), reliably predicted the mean ratings of MTurk 
works for both the sudden (p=<.0001) and sustained 
(p=0.0075*) video surveys. Even the lowest absolute means 
from the overall Weight Effort results could easily 
distinguish w1 from w2 video orderings (p=0.0150 for heavy 
and p=0.0057 for light). 

 Next, we assess the impact of robot form and task. Our 
hypotheses were 1) that robot form would impact mean 
ratings and, 2) that robot tasks would obscure the legibility of 
particular Efforts.  Specifically, we expected the dance task to 
obscure the Time Effort legibility (hitting a beat complicates 
velocity settings) and the look-for-someone task to obscure 
the Space Effort legibility (perhaps all scanning behaviors 
appear to be indirect).  



  

  
Figure 8.  Robot Form legibility results evaluating if comparision video 
ordering predicts MTurk ratings. ** p<.01, * p<.05, n/s not significant. 

In contrast to these hypotheses, the implemented Efforts 
were legible to subjects for almost all robot form (Fig. 8) and 
task (Fig. 9) analyses. We found that 75% of the surveys 
showed statistically significant results, regardless of either 
task or form. Note that in dividing our results, we also 
reduced our analysis sample size by two, so the continued 
preponderance of significant results is noteworthy. 

First, we evaluate the role of robot form (Fig. 8). We 
display the statistical significance results for each Effort 
divided by robot form in Fig. 8. We use ANOVA analysis to 
relate contrasting video order to MTurk rating, this time with 
N=72, evaluating either the Nao or Keepon ratings for the 
eight labels. All the robot-Effort pairs have significant results 
(in at least one direction) except for Keepon weight. There 
are slight variations in robot means, as per the first 
hypothesis, one can see that Keepon sustained is more 
strongly significant than Keepon sudden, whereas Nao 
sudden legible while sustained is not, such the Nao seems 
more abrupt overall than the Keepon. But most importantly, 
in the majority of cases, the Efforts are legibility regardless of 
robot form. 

The form results also draw our attention to places where 
we could improve our Laban feature implementations for 
each robot. Subjects appear to have difficulty seeing the Nao 
robot as displaying an indirect Space Effort. In this case, we 
do believe it is the robot form confounding legibility. Perhaps 
the Keepon’s additional degrees of freedoms (e.g. tilt) enact 
more complex motions that better achieve a sense of indirect 
attitude to its goal. If we were to add more curvature to the 
Nao motion (i.e. combining the pitch and yaw angles such 
that the Nao arced into its final goal angle), perhaps we 
would be able to improve this legibility.  

We next evaluate the role of robot task in Fig 9. Again, seven 
out of eight our task-Effort pairs have at least one significant 
pole result. We use single ANOVA analysis to relate 
contrasting video order to ratings (N=72), evaluating either 
the Dance or Look-for-someone data for all labels. All eight 
Effort labels showed significance on the Look task, which 
helps validate our choice of features to represent each Effort 
for that task category, however we had weaker results for the 
Dance task, so perhaps the tempo setting did make the robots 
tend to appear more sudden than sustained. 

  
Figure 9.  Robot Task legibility results evaluating if comparision video 
ordering predicts MTurk ratings. ** p<.01, * p<.05, n/s not significant. 

The clearer result is that the dance task obscures our 
Weight Effort features. The act of pushing off the floor or 
bopping up-and-down that in a common component of 
dancing motion in general may explain why people do not 
notice the spatial Weight features (head tilt and vertical 
compression), and again, the tempo constraints may have also 
obscured the temporal Weight features (acceleration profile). 

VI. FUTURE WORK 
We challenged ourselves to achieve readable expressive 

motions with a simple set of degrees of freedom: robot head 
motions via rotations and compression. Despite this, we have 
already achieved many significant results.  

The next step for the Laban Effort evaluation would be to 
validate our system in a non-relative context. We wanted to 
use comparison videos for our first investigation to see if 
varying simple motion parameters would project robot states 
to untrained people. Now that we have done that, we would 
like to evaluate the readability of such robot states in single 
videos, or more ambitiously, in naturalistic robot settings. 
The latter would be particularly auspicious for continuing 
our evaluation in a context where we can evaluate consistent 
Laban features across a variety of robot tasks. 

 
There also exist many robots that operate in human 

environments that can traverse space. Thus, the natural next 
step for us is to extend our Laban motion implementation to 
mobile robots, adding x-y translation to our possible degrees 
of freedom. In particular, adding translation could help 
improve the legibility of the Laban Weight Effort as its 
temporal representation in our framework is acceleration, and 
that was difficult to achieve with the short distances 
traversable by a robot head, and ultimately, we might like to 
have combinations of Laban Effort such as Space = direct 
and Weight = strong, which could, for example, require 
forward traversal in order to show acceleration if direct was 
expressed as having a specific heading orientation. 

Next, we plan to evaluate the mappings between 
combinations of Effort settings and specific robot state 
expressions.  We will also explore how they impact or cue 
human response. In our past work, we found indications that 
a robot that looks like it is in a rush was interrupted less often 



  

[3]. Given the parameters, there are a large variety of motions 
and motion combinations we could generate. We are working 
on interactive tools for learning or exploring such motion 
parameters in a live setting. 

VII. CONCLUSION 
In this work we have operationalized a system from dance 

and theater training in order to validate the possibility of 
communicating robot state expressions via robot head 
motions. We have demonstrated that our system, despite the 
low degrees of freedom, can reliably convey relative inner 
states such as hurried vs. relaxed, single-minded vs. flexible, 
overcome vs. buoyant, and rigid vs. open-hearted.   

Although particular researchers have assessed the utility 
of Laban Efforts to robotics in the past, our work is unique 
because of the following: (1) we apply the Laban Efforts to 
low degree of freedom robots, (2) we define features for all 
four Laban Efforts, and moreover, feature vectors from which 
motion designers (or an automated algorithm) can pick and 
choose based on task, (3) we use these features to 
parameterize robot task motions as opposed to isolated 
expressions, and (4) we specify an application order for these 
Effort features that is re-usable across robot forms and tasks. 

As we extend this design framework and come up with 
more ways to evaluate, learn or bring experts in to design 
expressive motions, we hope to seek out a much larger space 
of where robot expressive motion could aid a robot’s 
functional or social behaviors. Perhaps people will be more 
likely to help a robot that physically directs its verbal request 
at them in a non-aggressive manner. Perhaps we will even be 
able to use motion features to express a robot’s personality 
(e.g. extroversion/introversion) in ways that effectively 
customize to a particular user. 

Regardless of whether we or other researchers continue to 
use Laban features, two lessons we have learned during this 
investigation were: (1) simple robots can convey complex 
expressive states via motion, and (2) varying robot task 
motions is sufficient to communicate a variety of expressive 
states. These results open the doors to using robot body 
language as a modality of conveying robot inner-states to 
human bystanders, collaborators and companions. 
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