
 

Abstract— The Gesture Recognition Interactive Technology 
(GRiT) Chair Alarm aims to prevent patient falls from chairs 
and wheelchairs by recognizing the gesture of a patient 
attempting to stand. Patient falls are one of the greatest causes of 
injury in hospitals. Current chair and bed exit alarm systems are 
inadequate because of insufficient notification, high false-alarm 
rate, and long trigger delays. The GRiT chair alarm uses an 
array of capacitive proximity sensors and pressure sensors to 
create a map of the patient’s sitting position, which is then 
processed using gesture recognition algorithms to determine 
when a patient is attempting to stand and to alarm the care 
providers. This system also uses a range of voice and light 
feedback to encourage the patient to remain seated and/or to 
make use of the system’s integrated nurse-call function. This 
system can be seamlessly integrated into existing hospital WiFi 
networks to send notifications and approximate patient location 
through existing nurse call systems. 
 

I. INTRODUCTION 
atient falls are one of the leading causes of injury in 
hospitals among adults aged 65 or older. These falls 

currently cost the U.S. healthcare system an estimated 6-8 
billion dollars per year [1]. In order to minimize patient fall 
incidents, hospital nurses are currently required to complete a 
fall risk assessment form for each admitted patient. This form 
evaluates a patient’s risk of falling based on factors including 
history of falling, secondary diagnosis, ambulatory aid, 
intravenous therapy, gait analysis, and mental status [2]. The 
fall assessment score, commonly calculated on the Morse Fall 
Scale, dictates the required amount of nurse supervision [3]. 
Since it is impossible to have constant nurse supervision for 
every patient, many falls do occur in the current system. 
Recent changes to US medical insurance rules are providing 
additional incentive for hospitals to reduce the occurrence of 
these falls, as hospitals will no longer be reimbursed for costs 
associated with patient falls after the patient has been 
admitted. As a result, hospitals are quickly seeking more 
effective fall prevention strategies.! 

Based on discussions with clinicians at the Massachusetts 
General Hospital, one of the most common scenarios of falls 
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in hospitals occurs when patients who are confined to a chair 
or bed, and are not strong enough to stand or walk, attempt to 
do so. These patients are often confused and overestimate 
their own mobility and can seriously injure themselves by 
standing in the absence of a care provider. Elderly patients are 
not the only ones subject to fall. Even an athletic young 
person disconcerted by being on an IV is at a very high risk of 
falling. Mechanical restraints, such as locking seat-belt 
devices, have been used in the past to prevent patients from 
standing. However, not only do these devices inhibit the basic 
freedom of patients, thus increasing the risk that they will try 
to escape, but when patient falls occur with these restraints in 
place, they tend result in more serious injuries [4]. 

Current commercial fall-prevention systems include weight-
based bed alarms (e.g. Stryker Chaperone) and pressure-based 
chair alarms (e.g. Micro-Tech). These systems are typically 
binary alarms, which mean that they trigger on or off based on 
a parameter being above or below a threshold. In order to 
prevent false-triggers, many of these systems incorporate 
several seconds of delay before triggering the alarm, and thus 
further reducing the likelihood of preventing falls.  

Academic research in fall detection/prevention system has 
predominantly focused on using patient-attached inertial 
sensors or computer vision-based techniques. These systems 
are currently not ready to be applied in hospital or nursing 
home settings as their reliability is thus-far inconsistent and 
their cost-factor is relatively high [5]. 

The GRiT chair alarm system is developed to prevent 
patient falls by adding sensor technologies to chairs and 
wheelchairs to recognize the cognitive state of a person. Then, 
based on a probabilistic model, this system assesses the 
likelihood of a patient attempting to stand, and alerts the 
nursing staff of the potential danger while providing local 
voice feedback to encourage the patient to remain seated. This 
system communicates wirelessly over existing WiFi networks 
that are now common in most hospitals and nursing homes. 
The key innovations of this system include: 
" Multi-sensor hardware for measuring patient behavior 
" Algorithms for converting sensor values to the patients 

cognitive state based on a probabilistic model 
" Care provider alarms transmitted wirelessly over the 

existing WiFi networks 
" Interactive audio and visual cues encouraging the 

patient to remain seated  
The components of this system include the sensor system, 

signal processing and communications hardware, interactive 
user interface for both the patient and the care provider, and 
gestural recognition algorithms. 
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II. BACKGROUND 
Previous research in bed and chair occupant tracking 

demonstrates the utility of sensor pads in helping determine 
occupant behavior. For example, Harada et al used an array of 
force sensitive resistor (FSR) sensors to infer the patient’s 
posture lying on the bed from the 2D pressure-image of the 
bed [6]. Other sensing chairs, intended for use in office 
environments, aim to improve user posture or to control 
peripheral devices. One project reported a classification 
accuracy rate of 96% for familiar users and 79% for new users 
[7]. A related implementation also explored optimal sensor 
placement [8].  In a different domain, Furugoi et al created a 
seat-based driver fatigue detection system [9]. These systems 
use pressure sensors exclusively, as opposed to the GRiT 
system, which also use capacitive sensing in the seat-back. 

In the realm of furniture sensor arrays for elderly care and 
ubiquitous sensing, the SenseChair project at Carnegie Mellon 
University [10] has began to explore the relationship that the 
elderly often form with their favorite chair, which becomes 
their “activity hub.” The project included vibratory and sound 
feedback but thus far is treated more as a research platform 
rather than for commercial use, and also does not discuss 
concepts for fall prevention. Other projects also modeled 
longer term human behaviors with a multiplicity of sensors. 
Aoki et al present framework for finding behavioral patterns 
by looking at sequences of sensor states [11].  Ubiquitous 
sensing systems also track human activity within a house 
using RFID tags and pressure-sensing floors [12]. Many of the 
sensor-fusion concepts from these projects can be applied the 
the GRiT chair alarm system. 

III. SENSOR DESIGN AND IMPLEMENTATION 

A. Sensor Pad Design 
Sensors for the GRiT system include capacitance sensors 

located at the seat-back of the chair and pressure sensors 
located on the seat and the two armrests. Since the GRiT 
system is designed to be retrofitted onto existing chairs and 
wheelchairs, these sensors are incorporated into a 1/8” vinyl 
pad that can be draped or adhered to the seat and seat-back of 
any chair. The vinyl pad distributes the pressure applied to the 
sensors and can be sterilized using standard chemicals. 

B. Capacitance Sensor 
The capacitance sensors measure the distance between the 

seat-back and patient’s back at various heights along the seat-
back. The capacitance sensing hardware consists of seven 
horizontal conductive strips and a grounding pad installed in 
the seat. The patient, being a conductive object, greatly 
disturbs the electric field from the seat-back electrodes to the 
grounding pad, and thus produces a capacitance change 
inversely proportional to the distance between the electrode 
and the patient. Additionally, since capacitance sensors in this 
configuration have little sensitivity to nonconductive objects, 
personal effects such as books, pillows, and blankets will not 
falsely represent the patient body. 

C. Pressure Sensor 
Pressure sensors on the seat measure the patient’s static and 

dynamic weight distribution.  These measurements are made 
using a 3 x 4 array of force sensitive resistors (FSRs, 
Interlink), which lowers its resistance as a result of applied 
force. These sensors are sufficient to develop a qualitative 
map of patient contact position and pressure distribution. 
However, since the output from these sensors drift over long 
periods of time, these sensors they should be recalibrated 
regularly. Smaller FSRs are also installed in the armrests to 
measure the total arm pressure. These sensors are installed 
beneath the arm cushion to order to allow the cushion to 
evenly distribute the applied force. 

IV. HARDWARE DESIGN 

A. Microprocessor 
The GRiT system is controlled using a MSP430 

microprocessor (Texas Instruments). This device digitizes the 
voltages from the capacitance sensors and pressure sensors, 
and transmits this information via one of three possible 
communications links including WiFi, ZigBee, and USB. 
Multiple communications options were included to achieve 
maximum versatility for debugging purposes. 

 
Fig. 1.  System-level diagram of the GRiT system 

B. Wireless Connectivity 
Communications between the GRiT chair alarm and the 

care provider occur via standard WiFi networks that are now 
common in most hospitals and nursing homes. By taking 
advantage of existing hardware, this system does not require 
additional expenditures required of its own network. At the 
receiving end, one host PC receives messages from multiple 
GRiT alarms, and can eventually be configured to interface 
with the existing nurse call system so as to not introduce 
additional alarms that compete for nursing staff’s attention. 



 

C. Interactivity and User Interface 
One of the GRiT chair’s key fall-prevention strategies to act 

as a local interactive agent to remind patients when they are in 
danger of falling and encouraging them to remain seated. The 
GRiT system accomplishes this by providing patients with a 
voice-based feedback. The voice is digitally synthesized and 
loaded into an ISD5116 voice chip. The speech is 
programmed from the MSP430 and transmitted over I2C. 

V. GESTURE RECOGNITION 

A. System Overview 
As shown by the state diagram in Fig. 2, the GRiT gesture 

recognition algorithm deduces the likelihood that a patient 
will stand, and then uses a tiered response to address the 
problem address the problem and prevent patient falls. 

 
Fig. 2.  Pattern recognition flowchart representing the GRiT patient behavior 
model and strategies for tiered response. 

 
The gesture recognition algorithm is a three step process that 

involves: 1) Mapping sensor data to derive features about user 
state, 2) Probabilistically associating feature distribution with 
patient position or activity, 3) Using knowledge about flow of 
states to predict user behavior, specifically, the risk that the 
patient will soon slide off, fall out, or stand up from the chair.  

B. Mapping Sensor to Features 
The gesture state of the patient is evaluated from the sensor 

parameters via an intermediate abstraction layer of derived 
features. Features can combine any number of sensors and 

their variation as a function of time. In the GRiT model, 
sensors values are mapped to the following features: static 
back position, forward leaning angle, total bottom pressure, 
bottom pressure distribution (front-back or left-right), armrest 
pressure, total movement levels, as well as the time-
derivatives of all of these features. 

C. Using Features to Estimate User State 
Gesture states are inferred using a probabilistic score 

obtained by adding values from the set of associated derived 
features. The base weighting can be determined empirically 
from usage data, and normalized and adjusted for the weight 
of each person.  Gesture states transition when probabilistic 
scores for a new state rise above a preset threshold. These 
thresholds should also be calibrated to individual patients. As 
shown in Fig. 2, gesture states include sitting down, sitting, 
forward lean, slouching, high movement, attempting to exit, 
standing up, and falling out of chair. 

VI. RESULTS AND DISCUSSION 
The experiments presented in this paper are aimed to 

evaluate the overall design effectiveness and qualitatively 
determine the relevance and accuracy of the gesture 
recognition software. One result from these experiments is the 
discovery that the arm data is not uniquely relevant and often 
offers no additional information. As shown in Fig. 3, the 
patient may or may not choose to use the arms as support 
while standing up, however the overall seat pressure will 
always serve as an independent indicator that the patient is 
getting out of the chair.  If more pressure is applied to the 
armrests, then there is less on the seat. The information from 
the armrests is therefore redundant. However, armrest 
pressure can be an indication of other behaviors such as 
leaning one’s chin or repositioning oneself in the chair. 
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Fig. 3.  Feature activation levels when patient stand with and without using 
wheelchair arms, including total seat pressure, average proximity to back of 
the chair, and total arm pressure plotted versus time. 
 

The amplitude of sensor variation can be used to detect 
when a wheelchair is stationary and when it is in motion. As 
shown in Fig. 4, when the patient is moving forward and then 
backwards in the wheelchair, the amplitude of the electric 
field sensors is approximately 4% of full scale. However, the 
seat pressure can vary by as much as 35% of full scale. This 
measurement demonstrates why false triggering is such a huge 
problem in the traditional binary weight based alarms.  
However, the also graphs show that the combination of seat 
and back proximity data allows that the system can be used to 
infer actual patient behavior. 
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Fig. 4.  Variability of average seat pressure sensor increases when wheelchair 
in motion, variability in average proximity to the back of the chair increases 
somewhat and arm pressure variability is little changed. 
 

Fig. 5 (left) shows an interesting characteristic in the 
movement of a subject standing from the chair – there is an 
overall downward seat pressure increase before the person 
stands up from the chair. This is attributed to flexing leg 
muscles in preparation for pushing the occupant upwards. 
Perhaps this signal could be one of the key features for 
triggering the emergency patient exit alarm. 

Looking at a graph of a user standing up and sitting down 
three times in Fig. 5 (right), it is clear that the forward lean 
angle from the back of the chair is the earliest indicator that 
the person is in the process of exiting the chair. 
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Fig. 5.  The first graph highlights the presence of an initial increase of total 
seat pressure before a rapid decrease when a patient is exiting the chair.  The 
second depicts a scenario when the patient is standing up and sitting down 
three times in sequence and in which the forward lean is the first parameter 
value to indicate the start of a stand. 

 
However, note that the forward lean variable is activated in 

an almost identical fashion when the patient is just leaning 
forward to reach something as shown in Fig. 6.  In order to 
distinguish between the two conditions, one can look at the 
total seat pressure variable in conjunction to separate the two 
gestures. 
 

0 1 2 30

0.2

0.4

0.6

0.8

1

Time (s)

No
rm

al
ize

d 
AD

C 
Va

lu
e 

(A
.U

.)

Standing Up

 

 

SeatPressure
ForwardLean
ForwardPressure

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

Time (s)

No
rm

al
ize

d 
AD

C 
Va

lu
e 

(A
.U

.)

Leaning Forward

 

 

SeatPressure
ForwardLean
ForwardPressure

 
Fig. 6.  Plots of patient standing (left) then leaning forward (right) and the 
respective feature variations in total seat pressure, forward lean angle and the 
forward pressure distribution on the seat of the chair. 

 

Thus, one can use forward lean as an initial indicator that 
the patient might be soon be standing, but if the overall seat 
pressure levels do not change significantly, the system can 
reject this hypothesis.   
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